scholarly journals Development and Evaluation of Bidirectional LSTM Freeway Traffic Forecasting Models Using Simulation Data

Author(s):  
Rusul L. Abduljabbar ◽  
Hussein Dia ◽  
Pei-Wei Tsai

Abstract Long short-term memory (LSTM) models provide high predictive performance through their ability to recognize longer sequences of time series data. More recently, bidirectional deep learning models (BiLSTM) have extended the LSTM capabilities by training the input data twice in forward and backward directions. In this paper, BiLSTM short term traffic forecasting models have been developed and evaluated using data from a calibrated micro-simulation model for a congested freeway in Melbourne, Australia. The simulation model was extensively calibrated and validated to a high degree of accuracy using field data collected from 55 detectors on the freeway. The base year simulation model was then used to generate loop detector data including speed, flow and occupancy which were used to develop and compare a number of LSTM models for short-term traffic prediction up to 60 minutes into the future. The modelling results showed that BiLSTM outperformed other predictive models for multiple prediction horizons for base year conditions. The simulation model was then adapted for future year scenarios where the traffic demand was increased by 25-100 percent to reflect potential future increases in traffic demands. The results showed superior performance of BiLSTM for multiple prediction horizons for all traffic variables.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rusul L. Abduljabbar ◽  
Hussein Dia ◽  
Pei-Wei Tsai

AbstractLong short-term memory (LSTM) models provide high predictive performance through their ability to recognize longer sequences of time series data. More recently, bidirectional deep learning models (BiLSTM) have extended the LSTM capabilities by training the input data twice in forward and backward directions. In this paper, BiLSTM short term traffic forecasting models have been developed and evaluated using data from a calibrated micro-simulation model for a congested freeway in Melbourne, Australia. The simulation model was extensively calibrated and validated to a high degree of accuracy using field data collected from 55 detectors on the freeway. The base year simulation model was then used to generate loop detector data including speed, flow and occupancy which were used to develop and compare a number of LSTM models for short-term traffic prediction up to 60 min into the future. The modelling results showed that BiLSTM outperformed other predictive models for multiple prediction horizons for base year conditions. The simulation model was then adapted for future year scenarios where the traffic demand was increased by 25–100 percent to reflect potential future increases in traffic demands. The results showed superior performance of BiLSTM for multiple prediction horizons for all traffic variables.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2524
Author(s):  
Fernando Dorado Rueda ◽  
Jaime Durán Suárez ◽  
Alejandro del Real Torres

The prediction of time series data applied to the energy sector (prediction of renewable energy production, forecasting prosumers’ consumption/generation, forecast of country-level consumption, etc.) has numerous useful applications. Nevertheless, the complexity and non-linear behaviour associated with such kind of energy systems hinder the development of accurate algorithms. In such a context, this paper investigates the use of a state-of-art deep learning architecture in order to perform precise load demand forecasting 24-h-ahead in the whole country of France using RTE data. To this end, the authors propose an encoder-decoder architecture inspired by WaveNet, a deep generative model initially designed by Google DeepMind for raw audio waveforms. WaveNet uses dilated causal convolutions and skip-connection to utilise long-term information. This kind of novel ML architecture presents different advantages regarding other statistical algorithms. On the one hand, the proposed deep learning model’s training process can be parallelized in GPUs, which is an advantage in terms of training times compared to recurrent networks. On the other hand, the model prevents degradations problems (explosions and vanishing gradients) due to the residual connections. In addition, this model can learn from an input sequence to produce a forecast sequence in a one-shot manner. For comparison purposes, a comparative analysis between the most performing state-of-art deep learning models and traditional statistical approaches is presented: Autoregressive-Integrated Moving Average (ARIMA), Long-Short-Term-Memory, Gated-Recurrent-Unit (GRU), Multi-Layer Perceptron (MLP), causal 1D-Convolutional Neural Networks (1D-CNN) and ConvLSTM (Encoder-Decoder). The values of the evaluation indicators reveal that WaveNet exhibits superior performance in both forecasting accuracy and robustness.


Author(s):  
Nguyen Ngoc Tra ◽  
Ho Phuoc Tien ◽  
Nguyen Thanh Dat ◽  
Nguyen Ngoc Vu

The paper attemps to forecast the future trend of Vietnam index (VN-index) by using long-short term memory (LSTM) networks. In particular, an LSTM-based neural network is employed to study the temporal dependence in time-series data of past and present VN index values. Empirical forecasting results show that LSTM-based stock trend prediction offers an accuracy of about 60% which outperforms moving-average-based prediction.


2018 ◽  
Vol 7 (4.15) ◽  
pp. 25 ◽  
Author(s):  
Said Jadid Abdulkadir ◽  
Hitham Alhussian ◽  
Muhammad Nazmi ◽  
Asim A Elsheikh

Forecasting time-series data are imperative especially when planning is required through modelling using uncertain knowledge of future events. Recurrent neural network models have been applied in the industry and outperform standard artificial neural networks in forecasting, but fail in long term time-series forecasting due to the vanishing gradient problem. This study offers a robust solution that can be implemented for long-term forecasting using a special architecture of recurrent neural network known as Long Short Term Memory (LSTM) model to overcome the vanishing gradient problem. LSTM is specially designed to avoid the long-term dependency problem as their default behavior. Empirical analysis is performed using quantitative forecasting metrics and comparative model performance on the forecasted outputs. An evaluation analysis is performed to validate that the LSTM model provides better forecasted outputs on Standard & Poor’s 500 Index (S&P 500) in terms of error metrics as compared to other forecasting models.  


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 668 ◽  
Author(s):  
S. Poornima ◽  
M. Pushpalatha

Prediction of rainfall is one of the major concerns in the domain of meteorology. Several techniques have been formerly proposed to predict rainfall based on statistical analysis, machine learning and deep learning techniques. Prediction of time series data in meteorology can assist in decision-making processes carried out by organizations responsible for the prevention of disasters. This paper presents Intensified Long Short-Term Memory (Intensified LSTM) based Recurrent Neural Network (RNN) to predict rainfall. The neural network is trained and tested using a standard dataset of rainfall. The trained network will produce predicted attribute of rainfall. The parameters considered for the evaluation of the performance and the efficiency of the proposed rainfall prediction model are Root Mean Square Error (RMSE), accuracy, number of epochs, loss, and learning rate of the network. The results obtained are compared with Holt–Winters, Extreme Learning Machine (ELM), Autoregressive Integrated Moving Average (ARIMA), Recurrent Neural Network and Long Short-Term Memory models in order to exemplify the improvement in the ability to predict rainfall.


Author(s):  
Sawsan Morkos Gharghory

An enhanced architecture of recurrent neural network based on Long Short-Term Memory (LSTM) is suggested in this paper for predicting the microclimate inside the greenhouse through its time series data. The microclimate inside the greenhouse largely affected by the external weather variations and it has a great impact on the greenhouse crops and its production. Therefore, it is a massive importance to predict the microclimate inside greenhouse as a preceding stage for accurate design of a control system that could fulfill the requirements of suitable environment for the plants and crop managing. The LSTM network is trained and tested by the temperatures and relative humidity data measured inside the greenhouse utilizing the mathematical greenhouse model with the outside weather data over 27 days. To evaluate the prediction accuracy of the suggested LSTM network, different measurements, such as Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), are calculated and compared to those of conventional networks in references. The simulation results of LSTM network for forecasting the temperature and relative humidity inside greenhouse outperform over those of the traditional methods. The prediction results of temperature and humidity inside greenhouse in terms of RMSE approximately are 0.16 and 0.62 and in terms of MAE are 0.11 and 0.4, respectively, for both of them.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kun Niu ◽  
Ximei Luo ◽  
Shumei Zhang ◽  
Zhixia Teng ◽  
Tianjiao Zhang ◽  
...  

Enhancers are regulatory DNA sequences that could be bound by specific proteins named transcription factors (TFs). The interactions between enhancers and TFs regulate specific genes by increasing the target gene expression. Therefore, enhancer identification and classification have been a critical issue in the enhancer field. Unfortunately, so far there has been a lack of suitable methods to identify enhancers. Previous research has mainly focused on the features of the enhancer’s function and interactions, which ignores the sequence information. As we know, the recurrent neural network (RNN) and long short-term memory (LSTM) models are currently the most common methods for processing time series data. LSTM is more suitable than RNN to address the DNA sequence. In this paper, we take the advantages of LSTM to build a method named iEnhancer-EBLSTM to identify enhancers. iEnhancer-ensembles of bidirectional LSTM (EBLSTM) consists of two steps. In the first step, we extract subsequences by sliding a 3-mer window along the DNA sequence as features. Second, EBLSTM model is used to identify enhancers from the candidate input sequences. We use the dataset from the study of Quang H et al. as the benchmarks. The experimental results from the datasets demonstrate the efficiency of our proposed model.


Sign in / Sign up

Export Citation Format

Share Document