Clinicopathological Features of Fibrosarcomatous Dermatofibrosarcoma Protuberans and the Construction of a Back-Propagation Neural Network Recognition Model
Abstract BackgroundFibrosarcomatous dermatofibrosarcoma protuberans (FS-DFSP) is a form of tumor progression of dermatofibrosarcoma protuberans (DFSP) with an increased risk of metastasis and recurrence. Few studies have compared the clinicopathological features of FS-DFSP and conventional DFSP (C-DFSP).ObjectivesTo better understand the epidemiological and clinicopathological characteristics of FS-DFSP.MethodsWe conducted a cohort study of 221 patients diagnosed with DFSP and built a recognition model with a back-propagation (BP) neural network for FS-DFSP.ResultsTwenty-six patients with FS-DFSP and 195 patients with C-DFSP were included. There were no differences between FS-DFSP and C-DFSP regarding age at presentation, age at diagnosis, sex, size at diagnosis, size at presentation, and the size interval. The negative ratio of CD34 in FS-DFSP (11.5%) was significantly lower than that in C-DFSP (5.1%) (P=0.005). The average Ki-67 index of FS-DFSP (18.1%) cases was significantly higher than that of C-DFSP (8.1%) cases (P<0.001). The classification accuracy of the BP neural network model training samples was 100%. The correct rates of classification and misdiagnosis were 84.1% and 15.9%.ConclusionsThe clinical manifestations of FS-DFSP and C-DFSP are similar but have large differences in immunohistochemistry. The classification accuracy and feasibility of the BP neural network model are high in FS-DFSP.