Downregulation of CD44 Inhibits Proliferation, Invasion and Migration of Osteosarcoma Cells by Regulating the Expression of Cathepsin S
Abstract BackgroundOsteosarcoma (OS) is a malignant bone tumour of mesenchymal origin. These tumours are characterised by rich vascularisation, therefore promoting rapid proliferation and facilitating metastasis. CD44 has been reported to be involved in OS, but its role and molecular mechanisms in the pathogenesis of the disease are not fully determined. MethodsIn this study, we investigated the antitumor effect of CD44 on the development of OS and further explored the molecular mechanisms. The expression of CD44, cathepsin S and MMP-9 was detected by Western blot (WB) and reverse transcription-polymerase chain reaction (RT-qPCR) in different cell lines (MG63, U2OS OS and hFOB 1.19). To elucidate the role of CD44 in OS, MG63 and U2OS cells were treated with small interference RNA (siRNA) to knock down CD44, and the knockdown efficiency was validated with GFP and RT-qPCR. Furthermore, cell proliferation was assayed using Cell Counting Kit‑8 (CCK-8) and colony formation assays, and cell migration and invasion were assayed by transwell and wound-healing assays. ResultsWe found that CD44 expression in the MG63 and U2OS OS cell lines was markedly increased compared to that of the human osteoblast hFOB 1.19 cell line. Knockdown of CD44 inhibited proliferation, migration, and invasion of MG63 and U2OS cells, possibly by regulating the expression of cathepsin S in OS. ConclusionTaken together, our data reinforced the evidence that CD44 knockdown inhibited cell proliferation, migration, and invasion of OS cells accompanied by altered expression of cathepsin S. These findings offer new clues for OS development and progression, suggesting CD44 as a potential therapeutic target for OS.