Novel Technologies for Ultra-High-Rate Deformations of Materials

2002 ◽  
Author(s):  
K. T. Ramesh
Keyword(s):  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Gianluca Cassese ◽  
Alfonso Amendola ◽  
Francesco Maione ◽  
Mariano Cesare Giglio ◽  
Gianluca Pagano ◽  
...  

Prompt diagnosis and correct management of the so called “serrated lesions” (SLs) of the colon-rectum are generally considered of crucial importance in the past years, mainly due to their histological heterogeneity and peculiar clinical and molecular patterns; sometimes, they are missed at conventional endoscopy and are possibly implicated in the genesis of interval cancers. The aim of this review is to focus on the diagnostic challenges of serrated lesions, underlying the role of both conventional endoscopy and novel technologies. We will show how an accurate and precise diagnosis should immediately prompt the most appropriate therapy other than defining a proper follow-up program. It will be emphasized how novel endoscopic techniques may provide better visualization of mucosal microsurface structures other than enhancing the microvascular architecture, in order to better define and characterize specific patterns of mucosal lesions of the gastrointestinal tract. Standard therapy of SLs of the colon-rectum is still very debated, also due to the relatively lack of studies focusing on treatment issues. The high risk of incomplete resection, together with the high rate of postcolonoscopy interval cancers, suggests the need of an extra care when facing this kind of lesions. Given this background, we will outline useful technical tips and tricks in the resection of SLs, taking aspects such as the size and location of the lesions, as well as novel available techniques and technologies, other than future perspectives, including confocal laser endomicroscopy into consideration. Follow-up of SLs is another hot topic, also considering that their clinical impact has been misunderstood for a long time. The incidence of the so called interval colorectal cancer underlines how some weaknesses exist in current screening and follow-up programs. Considering the lack of wide consensus for the management of some SLs, we will try to summarize and clarify the best strategies for their optimal management.


Author(s):  
L. E. Murr ◽  
G. Wong

Palladium single-crystal films have been prepared by Matthews in ultra-high vacuum by evaporation onto (001) NaCl substrates cleaved in-situ, and maintained at ∼ 350° C. Murr has also produced large-grained and single-crystal Pd films by high-rate evaporation onto (001) NaCl air-cleaved substrates at 350°C. In the present work, very large (∼ 3cm2), continuous single-crystal films of Pd have been prepared by flash evaporation onto air-cleaved (001) NaCl substrates at temperatures at or below 250°C. Evaporation rates estimated to be ≧ 2000 Å/sec, were obtained by effectively short-circuiting 1 mil tungsten evaporation boats in a self-regulating system which maintained an optimum load current of approximately 90 amperes; corresponding to a current density through the boat of ∼ 4 × 104 amperes/cm2.


Author(s):  
A. Elgsaeter ◽  
T. Espevik ◽  
G. Kopstad

The importance of a high rate of temperature decrease (“rapid freezing”) when freezing specimens for freeze-etching has long been recognized1. The two basic methods for achieving rapid freezing are: 1) dropping the specimen onto a metal surface at low temperature, 2) bringing the specimen instantaneously into thermal contact with a liquid at low temperature and subsequently maintaining a high relative velocity between the liquid and the specimen. Over the last couple of years the first method has received strong renewed interest, particularily as the result of a series of important studies by Heuser and coworkers 2,3. In this paper we will compare these two freezing methods theoretically and experimentally.


2001 ◽  
Author(s):  
Z. Steel ◽  
J. Jones ◽  
S Adcock ◽  
R Clancy ◽  
L. Bridgford-West ◽  
...  

1989 ◽  
Vol 136 (5) ◽  
pp. 405 ◽  
Author(s):  
J. Sun ◽  
I.S. Reed ◽  
H.E. Huey ◽  
T.K. Truong

Sign in / Sign up

Export Citation Format

Share Document