Detection of Buried Targets via Active Selection of Labeled Data: Application to Sensing Subsurface UXO

2007 ◽  
Author(s):  
Lawrence Carin
2019 ◽  
Vol 46 (1) ◽  
pp. 1 ◽  
Author(s):  
Hiroyuki Shimono ◽  
Graham Farquhar ◽  
Matthew Brookhouse ◽  
Florian A. Busch ◽  
Anthony O'Grady ◽  
...  

Elevated atmospheric CO2 concentration (e[CO2]) can stimulate the photosynthesis and productivity of C3 species including food and forest crops. Intraspecific variation in responsiveness to e[CO2] can be exploited to increase productivity under e[CO2]. However, active selection of genotypes to increase productivity under e[CO2] is rarely performed across a wide range of germplasm, because of constraints of space and the cost of CO2 fumigation facilities. If we are to capitalise on recent advances in whole genome sequencing, approaches are required to help overcome these issues of space and cost. Here, we discuss the advantage of applying prescreening as a tool in large genome×e[CO2] experiments, where a surrogate for e[CO2] was used to select cultivars for more detailed analysis under e[CO2] conditions. We discuss why phenotypic prescreening in population-wide screening for e[CO2] responsiveness is necessary, what approaches could be used for prescreening for e[CO2] responsiveness, and how the data can be used to improve genetic selection of high-performing cultivars. We do this within the framework of understanding the strengths and limitations of genotype–phenotype mapping.


2014 ◽  
Vol 47 (3) ◽  
pp. 1443-1458 ◽  
Author(s):  
Ahmad Ali Abin ◽  
Hamid Beigy

2019 ◽  
Vol 279 ◽  
pp. 03007
Author(s):  
Ján Hollý ◽  
Adela Palková

The issue of climate change is undeniably demonstrating its presence. Consequently, there is a rising need to be prepared for upcoming threats by any means possible. One of the precautions includes obtaining the information characterizing the expected impact of global warming. This will allow authorities and other stakeholders to act accordingly in time. The article presents the assessment of the extent of impact of energy-related construction solutions in dwelling type unit situated in Central Europe region under the 21st century climate conditions. The findings represent eventual demands of energy for cooling and heating and its prospective savings. This is conducted by consecutively and automatically changing the parameters in individual simulation runs. As a basis for simulations, regionally scaled weather data of three different climate areas are used. These data are based on the emission scenarios by IPCC and are reaching to the year 2100. The selection of assessed parameters and climate data application are briefly explained in the article. The results of simulations are evaluated and recommended solutions are stated in regard to the specific energy-related construction changes. The aim is to successfully mitigate and adapt to the climate change phenomenon.


Sign in / Sign up

Export Citation Format

Share Document