Multi-Model Ensemble Approaches to Data Assimilation Using the 4D-Local Ensemble Transform Kalman Filter

2010 ◽  
Author(s):  
Kayo Ide
2017 ◽  
Vol 145 (11) ◽  
pp. 4575-4592 ◽  
Author(s):  
Craig H. Bishop ◽  
Jeffrey S. Whitaker ◽  
Lili Lei

To ameliorate suboptimality in ensemble data assimilation, methods have been introduced that involve expanding the ensemble size. Such expansions can incorporate model space covariance localization and/or estimates of climatological or model error covariances. Model space covariance localization in the vertical overcomes problematic aspects of ensemble-based satellite data assimilation. In the case of the ensemble transform Kalman filter (ETKF), the expanded ensemble size associated with vertical covariance localization would also enable the simultaneous update of entire vertical columns of model variables from hyperspectral and multispectral satellite sounders. However, if the original formulation of the ETKF were applied to an expanded ensemble, it would produce an analysis ensemble that was the same size as the expanded forecast ensemble. This article describes a variation on the ETKF called the gain ETKF (GETKF) that takes advantage of covariances from the expanded ensemble, while producing an analysis ensemble that has the required size of the unexpanded forecast ensemble. The approach also yields an inflation factor that depends on the localization length scale that causes the GETKF to perform differently to an ensemble square root filter (EnSRF) using the same expanded ensemble. Experimentation described herein shows that the GETKF outperforms a range of alternative ETKF-based solutions to the aforementioned problems. In cycling data assimilation experiments with a newly developed storm-track version of the Lorenz-96 model, the GETKF analysis root-mean-square error (RMSE) matches the EnSRF RMSE at shorter than optimal localization length scales but is superior in that it yields smaller RMSEs for longer localization length scales.


2017 ◽  
Author(s):  
Yun Liu ◽  
Eugenia Kalnay ◽  
Ning Zeng ◽  
Ghassem Asrar ◽  
Zhaohui Chen ◽  
...  

Abstract. We developed a Carbon data assimilation system to estimate the surface carbon fluxes using the Local Ensemble Transform Kalman Filter and atmospheric transfer model of GEOS-Chem driven by the MERRA-1 reanalysis of the meteorological fields based on the Goddard Earth Observing System Model, Version 5 (GEOS-5). This assimilation system is inspired by the method of Kang et al. [2011, 2012], who estimated the surface carbon fluxes in an Observing System Simulation Experiment (OSSE) mode, as evolving parameters in the assimilation of the atmospheric CO2, using a short assimilation window of 6 hours. They included the assimilation of the standard meteorological variables, so that the ensemble provided a measure of the uncertainty in the CO2 transport. After introducing new techniques such as variable localization, and increased observation weights near the surface, they obtained accurate carbon fluxes at grid point resolution. We developed a new version of the LETKF related to the Running-in-Place (RIP) method used to accelerate the spin-up of EnKF data assimilation [Kalnay and Yang, 2010; Wang et al., 2013, Yang et al., 2014]. Like RIP, the new assimilation system uses the no-cost smoothing algorithm for the LETKF [Kalnay et al., 2007b], which allows shifting at no cost the Kalman Filter solution forward or backward within an assimilation window. In the new scheme a long observation window (e.g., 7-days or longer) is used to create an LETKF ensemble at 7-days. Then, the RIP smoother is used to obtain an accurate final analysis at 1-day. This analysis has the advantage of being based on a short assimilation window, which makes it more accurate, and of having been exposed to the future 7-days observations, which accelerates the spin up. The assimilation and observation windows are then shifted forward by one day, and the process is repeated. This reduces significantly the analysis error, suggesting that this method could be used in other data assimilation problems.


2019 ◽  
Author(s):  
Soledad Osores ◽  
Juan Ruiz ◽  
Arnau Folch ◽  
Estela Collini

Abstract. Quantitative volcanic ash cloud forecasts are prone to uncertainties coming from the source term quantification (e.g. eruption strength or vertical distribution of the emitted particles), with consequent implications on operational ash impact assessment. We present an ensemble-based data assimilation and forecast system for volcanic ash dispersal and deposition aimed at reducing uncertainties related to eruption source parameters. The FALL3D atmospheric dispersal model is coupled with the Ensemble Transform Kalman Filter (ETKF) data assimilation technique by combining ash mass loading observations with ash dispersal simulations in order to obtain a better joint estimation of 3D ash concentration and source parameters. The ETKF-FALL3D data assimilation system is evaluated performing Observation System Simulation Experiments (OSSE) in which synthetic observations of fine ash mass loadings are assimilated. The evaluation of the ETKF-FALL3D system considering reference states of steady and time-varying eruption source parameters shows that the assimilation process gives both better estimations of ash concentration and time-dependent optimized values of eruption source parameters. The joint estimation of concentrations and source parameters leads to a better analysis and forecast of the 3D ash concentrations. Results show the potential of the methodology to improve volcanic ash cloud forecasts in operational contexts.


2011 ◽  
Vol 139 (6) ◽  
pp. 1932-1951 ◽  
Author(s):  
José A. Aravéquia ◽  
Istvan Szunyogh ◽  
Elana J. Fertig ◽  
Eugenia Kalnay ◽  
David Kuhl ◽  
...  

Abstract This paper evaluates a strategy for the assimilation of satellite radiance observations with the local ensemble transform Kalman filter (LETKF) data assimilation scheme. The assimilation strategy includes a mechanism to select the radiance observations that are assimilated at a given grid point and an ensemble-based observation bias-correction technique. Numerical experiments are carried out with a reduced (T62L28) resolution version of the model component of the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS). The observations used for the evaluation of the assimilation strategy are AMSU-A level 1B brightness temperature data from the Earth Observing System (EOS) Aqua spacecraft. The assimilation of these observations, in addition to all operationally assimilated nonradiance observations, leads to a statistically significant improvement of both the temperature and wind analysis in the Southern Hemisphere. This result suggests that the LETKF, combined with the proposed data assimilation strategy for the assimilation of satellite radiance observations, can efficiently extract information from radiance observations.


2006 ◽  
Vol 63 (1) ◽  
pp. 175-186 ◽  
Author(s):  
Sim D. Aberson ◽  
Brian J. Etherton

Abstract Two operational synoptic surveillance missions were conducted by the National Oceanic and Atmospheric Administration into Hurricane Humberto (2001). Forecasts from two leading dynamical hurricane track forecast models were improved substantially during the watch and warning period before a projected landfall by the assimilation of the additional dropwindsonde data. Feasibility tests with a barotropic model suggest that further improvements may be obtained by the use of the ensemble transform Kalman filter for assimilating these additional data into the model. This is the first effort to assimilate data into a hurricane model using the ensemble transform Kalman filter.


Sign in / Sign up

Export Citation Format

Share Document