scholarly journals Micropropagation of Lupinus texensis from Cotyledonary Node Explants

HortScience ◽  
1992 ◽  
Vol 27 (11) ◽  
pp. 1222-1223 ◽  
Author(s):  
Abba Upadhyaya ◽  
Tim D. Davis ◽  
Daksha Sankhla ◽  
N. Sankhla

Both kinetin and BA promoted in vitro shoot formation from hypocotyl explants of Lupinus texensis Hook. placed on Murashige and Skoog (MS) medium. With either cytokinin, shoot formation was best at ≈4.5 μm. Adventitious root formation was observed only on tissue culture-derived shoots placed in MS media containing 5.4 to 54 μM NAA. IAA and IBA, at concentrations ranging from 5 to 55 μm, failed to stimulate rooting. Even at the optimal concentration of NAA, only 14% of the shoots produced roots. Thus, although hypocotyl explants readily produced shoots, adventitious root formation on these shoots occurred with relatively low frequency. Chemical names used: 6-benzylaminopnrine (BA); indole-3-acetic acid (IAA); indole-3-butyric acid (IBA); 6-furfurylaminopurine (kinetin); 1-naphthaleneacetic acid (NAA).

Author(s):  
Durgesh Kumar Tripathi ◽  
Padmaja Rai ◽  
Gea Guerriero ◽  
Shivesh Sharma ◽  
Francisco J Corpas ◽  
...  

Abstract Arsenic (As) negatively affects plant development. Using rice as a model, this study evaluates how the application of silicon (10 µM Si) can favour the formation of adventitious roots under arsenate stress (50 µM As V) as a mechanism to mitigate its negative effects. Indeed, the simultaneous application of As V and Si up-regulated the expression of genes involved in nitric oxide (NO) metabolism (OsNOA1), cell cycle progression (G2-M, OsCDKA1), auxin (IAA, indole-3-acetic acid) biosynthesis (OsYUCCA1 and OsTAA1) and transport (OsPIN1, OsPIN5 and OsPIN10) and Si uptake (OsLsi1 and OsLsi2), which accompanied adventitious root formation. Furthermore, Si triggered the expression and activity of MDHAR and DHAR involved in ascorbate recycling. The treatment with L-NAME, an inhibitor of NO generation, significantly suppressed adventitious root formation, even in the presence of Si; however, supplying NO in the growth media rescued its effects. The data obtained suggest that both NO and IAA are essential for Si-mediated adventitious root formation under As V stress. Interestingly, TIBA (a polar auxin transport inhibitor) suppressed adventitious root formation, even in the presence of Si and SNP (an NO donor), suggesting that Si is involved in a mechanism whereby a cellular signal is triggered and requires NO formation first and, then, IAA.


1993 ◽  
Vol 71 (12) ◽  
pp. 1645-1650 ◽  
Author(s):  
Jin-Hao Liu ◽  
Ilabanta Mukherjee ◽  
David M. Reid

Adventitious root formation by the hypocotyl cuttings of sunflower seedlings was greatly affected by the pH of buffered and unbuffered solutions bathing their basal portion. Exposure to low pH for 5 h after original root excision promoted root formation. Reduction of endogenous indole-3-acetic acid movement from the cotyledons and shoot apex was achieved by using N-1-naphthylphthalamic acid (an inhibitor of indole-3-acetic acid transport) and by removal of the cotyledons and shoot apex. Both the inhibitor and organ removal inhibited adventitious root formation, but acidic conditions could, to varying degrees, overcome this inhibition. Acidic conditions also increased the rate of [3H]indole-3-acetic acid uptake from the solutions around the hypocotyl bases and the rate of [3H]indole-3-acetic acid movement from cotyledons to the hypocotyl bases. Thus, acidic conditions may stimulate rooting by increasing the rate of basipetal indole-3-acetic acid transport to the zone of root initiation. These experiments show that in studies of the effects of various substances on rooting, the experimenter must be aware of these pH effects and take appropriate precautions. Key words: adventitious roots, auxin, indole-3-acetic acid, Helianthus annuus, pH.


2017 ◽  
Vol 226 ◽  
pp. 250-260 ◽  
Author(s):  
Sang-Ho Park ◽  
Mohamed Elhiti ◽  
Huaiyu Wang ◽  
Anna Xu ◽  
Dan Brown ◽  
...  

1996 ◽  
Vol 121 (3) ◽  
pp. 393-398 ◽  
Author(s):  
Jun Chen ◽  
Dengru Wu ◽  
Francis H. Witham ◽  
Charles W. Heuser ◽  
Richard N. Arteca

Adventitious root formation (rooting) in `Berken' mungbean [Vigna radiata (L.) Rwiclz.] cuttings is stimulated by indole-3-acetic acid (IAA). To understand the molecular events that occur during IAA-induced adventitious root initiation, a λgt11 cDNA library was made from mungbean hypocotyls treated with 500 μm IAA for 3 hours and differentially screened. Two cDNAs MII-3 and MII-4 were isolated. Southern analysis revealed that both cDNAs are encoded by different genes. Expression studies showed different patterns for both genes. Both MII-3 and MII-4 were highly expressed in IAA treated hypocotyls, whereas MII-4 was also induced in IAA treated epicotyls. There was no expression of either MII-3 or MII-4 in control or IAA treated leaves. With increasing concentrations of IAA from 100 to 1000 μm there was an increase in the average root number per cutting as well as a stimulation in MII-3 and MII-4. Both MII-3 and MII-4 showed a stimulation in expression 4 hours following treatment with 500 μm IAA reaching a maximum from 4 to 8 hours followed by a decline thereafter. Basal expression of MII-3 was evident between 2 and 8 hours, whereas, a high degree of basal expression was found with MII-4 from 1 to 8 hours followed by a sharp decline. Cycloheximide (50 μm) dramatically reduced rooting and MII-3 expression, whereas MII-4 was only slightly affected.


2010 ◽  
Vol 13 (1) ◽  
pp. 48-53
Author(s):  
Huong Thi Ngoc Nguyen ◽  
Mai Thi Bach Vo

Morinda citrifolia L. is a valuable medicinal plant, used to treat many diseases, such as sleeplessness, backache, high blood pressure... To study the shoot morphogenesis in Morinda citrifolia L. for propagation in the future, we examined the effects of BA, Zeatin and NAA on adventitious shoot formation of hypocotyl. The results showed that the regeneration of adventitious shoot comprised three steps of morphogenesis. In this process, Zeatin 1mg/l stimulated the formation of shoot primordia in dark (after a week), earlier than BA at the same concentration. Shoot generation was slow (after five weeks) on MS medium supplemented with 0,1mg/l and Zeatin 1mg/l. Roles of respiration rate and endogenous hormones were discussed to understand the physiological changes in the adventitious root formation.


2017 ◽  
Vol 15 (10) ◽  
pp. 701-710
Author(s):  
Piyaporn SAENSOUK ◽  
Surapon SAENSOUK ◽  
Phattaraporn PIMMUEN

An efficient and rapid protocol for the micropropagation of Globba schomburgkii Hook. f. via bulbil explants was investigated. The long divided and undivided bubils of G. schomburgkii Hook. f. were cultured on MS medium (Murashige and Skoog) that had either 3 mg/l benzyladenine (BA) or 0.5 mg/l naphthaleneacetic acid (NAA) added for 8 weeks. The results indicated that the long divided bulbils of G. schomburgkii Hook. f. showed a greater amount of plant regeneration than the undivided bulbils. Callus induction, as well as shoot and root formation, were observed when culturing microshoots of 1 cm in length on media (MS) that had Thidiazuron (TDZ) or NAA plus BA added at a range of concentrations for 8 weeks. The highest percentage of callus induction was 40 % when culturing the microshoots on MS medium supplemented with NAA and BA. The best result for shoot formation was achieved when culturing the microshoots on MS medium with TDZ added. The highest number of roots was obtained when culturing the microshoots on MS medium with NAA and BA added. The in vitro-derived plantlets of G. schomburgkii Hook. f. were transplanted to pots containing different types of potting mixture in a greenhouse. The survival rates were 80 % when G. schomburgkii Hook. f. was transplanted to sand.


Sign in / Sign up

Export Citation Format

Share Document