scholarly journals Use of Compost Products for Ornamental Crop Production: Research and Grower Experiences

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 698d-698
Author(s):  
George E. Fitzpatrick ◽  
Edwin R. Duke ◽  
Kimberly A. Klock

Horticultural growing medium components must be selected with regard to their influence on properties such as cost, availability, ease of mixing, appearance, pH, nutrient levels, soluble salt levels, exchange capacity, aeration, particle size distribution, bulk density, water-holding capacity, and consistency. Over the past several decades, various types of compost products made from urban waste materials have been evaluated as components in horticultural growing mixes. The highest-quality compost products tested have frequently compared favorably with peat as one of the organic components in growing mixes. The lowest-quality compost materials tested have retarded plant growth and, in extreme cases, contributed to plant mortality. Occasionally, compost products that performed well in research trials did not prove to be satisfactory when used in commercial nursery crop production because of the lack of repeatable consistency between batches produced in large-scale municipal composting operations. One of the major reasons for the lack of consistency in compost quality is the highly variable nature of organic feedstocks accepted by many large-scale composting operations. The highest-quality composts tend to be produced in composting operations in which facility management decisions are made with consideration on their impact on the economic, physical, and chemical parameters of the end product.

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 448F-448
Author(s):  
D. Wees ◽  
R. Lowe ◽  
D. Donnelly

Textile fiber residues spun into small (2 to 5 mm), soft pellets (Flocagro®), through a patented process, were evaluated for horticultural use. Pellets alone and in mixtures with other substrates, were assessed using standard criteria including cation exchange capacity (CEC), aeration porosity, bulk density, and water-holding capacity. The physical and chemical properties of these textile pellets were acceptable as a horticultural growing medium when mixed with substrates such as peat; it was light-weight, had a high water-holding capacity, moderately high aeration porosity, neutral pH, low inherent fertility, low buffering capacity, and mixed easily with other substrates. The potential of Flocagro® in potting mixtures for radish and tomato seedlings and micropropagated potato plantlets was demonstrated.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 523a-523
Author(s):  
A.M. Shirazi ◽  
L.H. Fuchigami

Composted Tillamook Methane-digested dairy manure (processed fiber) plus woodwaste from landfills at Tillamook, Ore., was compared with Langerwerf, Calif., processed fiber amended with woodwaste from Tillamook, a mixture of peatmoss and pumice, and two commercial mixes from Black Gold Inc., Hubbard, Ore. Electrical conductivity, water-holding capacity, pH, cation exchange capacity, and mineral contents of Tillamook processed fiber with a mixture of wood waste were within the acceptable range for production of some nursery crops. Tillamook processed fiber with a mixture of wood waste media were favorable for the germination and growth of the lettuce and radish cultivars. The performance for seed germination was comparable to the performance of both Black Gold media and better than the other media. The growth of marigold `Bonanza Yellow', petunia `Plum Maddness', and salvia `Purple Sizzler' in Tillamook processed fiber wood media, supplemented with weekly feeding of fertilizer, was comparable to their growth in Black Gold media and better than the other media. The growth of `Double Delight' rose plants in Tillamook processed fiber wood media was similar to their performance in Black Gold media.


2017 ◽  
Vol 16 (1) ◽  
pp. 52-60
Author(s):  
O. E. OMOFUNMI ◽  
J. .K. ADEWUMI ◽  
A .F. ADISA ◽  
S. O. ALEGBELEYE

The study was performed to examine catfish (Clarias gariepinus) effluents on the quality of soil in La-gos State, Nigeria. Five fish farms with highest stock density were selected for evaluation. The soil sampling was collected at 10 metres apart before the effluent discharged site; at the effluent dis-charged site; 10 metres after the effluent discharged site and Non-effluent discharged site (control) denoted as SA, SB, SC and SD respectively. Analysis of the required soil physical and chemical prop-erties were performed at 5 cm depth from 0 – 20 cm. Results showed that the effluents discharged site and Non-effluents discharged site indicated that they contained Temperature (26.5±0.1, 27.5±0.1 oC), pH ( 6.7±0.1, 6.2±0.1), Water Holding Capacity (WHC) (36.4±2.1, 21.4±1.2%), Organic carbon (10.8±0.1, 7.4±0.1 mg/kg), TN (26.4±2.2, 22.4±2.1 mg/kg), TP (7.3±0.1, 6.1±0.1 mg/kg), Potassium (3.4±0.1, 3.1±0.1 mg/kg), Calcium (9.5±0.1, 5.9±0.1 mg/kg), Sodium (1.6±0.1, 0.9±0.1 mg/kg), mag-nesium (8.8±0.1, 7.2±0.1 mg/kg), Zinc (3.3±0.1, 3.0±0.1 mg/kg), Iron (58.7±4.2, 55.8±3.2 mg/kg) and Manganese (23.6±2.3, 21.1±2.2 mg/kg) respectively and were significant different (p≥0.05). Both soil nutrients at the immediate environment of effluents discharged site were within critical range of soil fertility for arable crop production.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 902F-902
Author(s):  
Mana Libran ◽  
David J. Williams

Leca clay pebbles were characterized and tested as a possible growing-medium for use in floriculture production systems that recycle irrigation water. Leca clay pebbles are light porous particles made by heating clay. X-ray diffraction tests indicate that high manufacturing temperatures (1100C) result in final particles composed primarily of quartz. Water-holding capacity was determined by pressure plate apparatus at eight pressures. Leca particles that were 4 to 8 mm retained more water than particles sized 12 to 18 mm. The bulk density of the particles were 0.43 and 0.37 g/cc for the 48-mm and the 12- to 18-mm particles, respectively. The pH of the leca particles was 7.77. The cation exchange capacity of the leca particles was relatively low compared to a standard soilless growing medium of 1 pine bark: 1 peat: 1 perlite (by volume). Leca particles have a CEC of o.82 me/100 g Ca and 6.36 me/100 g K, where the CEC of the previously mentioned soilless.medium was 24.21 me/100g Ca and 30.08 me/100 g K. Leca clay pebbles were tested as growing medium for the production of geraniums (Pelargonium hortorum) stock plants.


2010 ◽  
Vol 58 (Supplement 1) ◽  
pp. 1-5 ◽  
Author(s):  
M. Jolánkai ◽  
F. Nyárai ◽  
K. Kassai

Long-term trials have a twofold role in life sciences, acting as both live laboratories and public collections. Long-term trials are not simply scientific curios or the honoured relics of a museum, but highly valuable live ecological models that can never be replaced or restarted if once terminated or suspended. These trials provide valuable and dynamic databases for solving scientific problems. The present paper is intended to give a brief summary of the crop production aspects of long-term trials.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2617
Author(s):  
Alicja Szatanik-Kloc ◽  
Justyna Szerement ◽  
Agnieszka Adamczuk ◽  
Grzegorz Józefaciuk

Thousands of tons of zeolitic materials are used yearly as soil conditioners and components of slow-release fertilizers. A positive influence of application of zeolites on plant growth has been frequently observed. Because zeolites have extremely large cation exchange capacity, surface area, porosity and water holding capacity, a paradigm has aroused that increasing plant growth is caused by a long-lasting improvement of soil physicochemical properties by zeolites. In the first year of our field experiment performed on a poor soil with zeolite rates from 1 to 8 t/ha and N fertilization, an increase in spring wheat yield was observed. Any effect on soil cation exchange capacity (CEC), surface area (S), pH-dependent surface charge (Qv), mesoporosity, water holding capacity and plant available water (PAW) was noted. This positive effect of zeolite on plants could be due to extra nutrients supplied by the mineral (primarily potassium—1 ton of the studied zeolite contained around 15 kg of exchangeable potassium). In the second year of the experiment (NPK treatment on previously zeolitized soil), the zeolite presence did not impact plant yield. No long-term effect of the zeolite on plants was observed in the third year after soil zeolitization, when, as in the first year, only N fertilization was applied. That there were no significant changes in the above-mentioned physicochemical properties of the field soil after the addition of zeolite was most likely due to high dilution of the mineral in the soil (8 t/ha zeolite is only ~0.35% of the soil mass in the root zone). To determine how much zeolite is needed to improve soil physicochemical properties, much higher zeolite rates than those applied in the field were studied in the laboratory. The latter studies showed that CEC and S increased proportionally to the zeolite percentage in the soil. The Qv of the zeolite was lower than that of the soil, so a decrease in soil variable charge was observed due to zeolite addition. Surprisingly, a slight increase in PAW, even at the largest zeolite dose (from 9.5% for the control soil to 13% for a mixture of 40 g zeolite and 100 g soil), was observed. It resulted from small alterations of the soil macrostructure: although the input of small zeolite pores was seen in pore size distributions, the larger pores responsible for the storage of PAW were almost not affected by the zeolite addition.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 246
Author(s):  
Markose Chekol Zewdie ◽  
Michele Moretti ◽  
Daregot Berihun Tenessa ◽  
Zemen Ayalew Ayele ◽  
Jan Nyssen ◽  
...  

In the past decade, to improve crop production and productivity, Ethiopia has embarked on an ambitious irrigation farming expansion program and has introduced new large- and small-scale irrigation initiatives. However, in Ethiopia, poverty remains a challenge, and crop productivity per unit area of land is very low. Literature on the technical efficiency (TE) of large-scale and small-scale irrigation user farmers as compared to the non-user farmers in Ethiopia is also limited. Investigating smallholder farmers’ TE level and its principal determinants is very important to increase crop production and productivity and to improve smallholder farmers’ livelihood and food security. Using 1026 household-level cross-section data, this study adopts a technology flexible stochastic frontier approach to examine agricultural TE of large-scale irrigation users, small-scale irrigation users and non-user farmers in Ethiopia. The results indicate that, due to poor extension services and old-style agronomic practices, the mean TE of farmers is very low (44.33%), implying that there is a wider room for increasing crop production in the study areas through increasing the TE of smallholder farmers without additional investment in novel agricultural technologies. Results also show that large-scale irrigation user farmers (21.05%) are less technically efficient than small-scale irrigation user farmers (60.29%). However, improving irrigation infrastructure shifts the frontier up and has a positive impact on smallholder farmers’ output.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 295
Author(s):  
Yuan Gao ◽  
Anyu Zhang ◽  
Yaojie Yue ◽  
Jing’ai Wang ◽  
Peng Su

Suitable land is an important prerequisite for crop cultivation and, given the prospect of climate change, it is essential to assess such suitability to minimize crop production risks and to ensure food security. Although a variety of methods to assess the suitability are available, a comprehensive, objective, and large-scale screening of environmental variables that influence the results—and therefore their accuracy—of these methods has rarely been explored. An approach to the selection of such variables is proposed and the criteria established for large-scale assessment of land, based on big data, for its suitability to maize (Zea mays L.) cultivation as a case study. The predicted suitability matched the past distribution of maize with an overall accuracy of 79% and a Kappa coefficient of 0.72. The land suitability for maize is likely to decrease markedly at low latitudes and even at mid latitudes. The total area suitable for maize globally and in most major maize-producing countries will decrease, the decrease being particularly steep in those regions optimally suited for maize at present. Compared with earlier research, the method proposed in the present paper is simple yet objective, comprehensive, and reliable for large-scale assessment. The findings of the study highlight the necessity of adopting relevant strategies to cope with the adverse impacts of climate change.


2021 ◽  
Vol 53 (1) ◽  
pp. 135-148
Author(s):  
Christopher J. Ellis ◽  
Sally Eaton

AbstractThere is growing evidence that species and communities are responding to, and will continue to be affected by, climate change. For species at risk, vulnerability can be reduced by ensuring that their habitat is extensive, connected and provides opportunities for dispersal and/or gene flow, facilitating a biological response through migration or adaptation. For woodland epiphytes, vulnerability might also be reduced by ensuring sufficient habitat heterogeneity, so that microhabitats provide suitable local microclimates, even as the larger scale climate continues to change (i.e. microrefugia). This study used fuzzy set ordination to compare bryophyte and lichen epiphyte community composition to a large-scale gradient from an oceanic to a relatively more continental macroclimate. The residuals from this relationship identified microhabitats in which species composition reflected a climate that was more oceanic or more continental than would be expected given the prevailing macroclimate. Comparing these residuals to features that operate at different scales to create the microclimate (landscape, stand and tree-scale), it was possible to identify how one might engineer microrefugia into existing or new woodland, in order to reduce epiphyte vulnerability to climate change. Multimodel inference was used to identify the most important features for consideration, which included local effects such as height on the bole, angle of bole lean and bark water holding capacity, as well as tree species and tree age, and within the landscape, topographic wetness and physical exposure.


2010 ◽  
Vol 50 (1) ◽  
pp. 665
Author(s):  
Ally Oliver

A permit to work (PTW) system is a formal system used to control certain types of work that are identified as potentially hazardous. It is also a means of communication between facility management, plant supervisors and operators, and those who carry out the hazardous work. The essential features of a PTW system are: • Clear identification for who may authorise particular jobs, and who is responsible for specifying the necessary precautions; • Training and instruction in the issue and use of permits; and, • Monitoring and auditing to ensure that the system works as intended. PTW systems are the key to ensuring safe execution of activities at site, yet there are many approaches to how permit systems can, and should, work. Each approach has its own merits and weaknesses. Woodside recognised that, as part of its ongoing program to improve the safety of its workers, there existed significant scope for a new and better work management system. After many years of incremental evolution of the PTW and the fragmentation of the parent system as each facility developed its own variation, it was evident that a completely new system embracing modern technology would provide the best result, while simultaneously standardising Woodside with one common and centralised system. The divergence of the systems over time caused increasing difficulty in managing changes to the PTW system across all sites and in benchmarking to determine best practice. A centralised system would remove accountability from facilities for the development of the business rules, and instead ensure they focussed on compliance with the rules. The new system would adopt key learnings from the industry’s history and address root causes of past incidents. It would also enable the ability to adopt future learnings and become a conduit for rapid integration into the working practices on all sites. The Integrated Safe System of Work (iSSoW) developed by Woodside adopts best practices from permit systems worldwide and combines them with new innovative management features. The system is administered through a simple-to-use computer interface, with incorporation of many of the business rules into the software package. The iSSoW is now in place on all Woodside facilities (platforms, not-normally manned installations, FPSO’s and onshore plants). With nearly 4,000 users, the implementation has required careful coordination, and been supported by a comprehensive training programme. The system has been demonstrated to be both effective and efficient. Effectiveness—the improvement of safety performance—was the primary objective. The system has raised work party hazards awareness, and has resulted in significant improvements in working practices company-wide. Efficiency was a secondary goal, and is made possible through streamlining in the user-interface. The introduction of the new system complements Woodside’s work to develop an improved safety culture, and brings consistency across all sites and all shifts—essential features as our industry struggles to deal with the growing scarcity of skills and experience. The system is now being reviewed by organisations across many industry and service sectors in Australia, and has been implemented in the power industry. This paper discusses the attributes of the system, the many challenges associated with development and large-scale implementation of such a core system, and the additional opportunities the system presents. Using a case study of implementation of iSSoW onto the Woodside operational facilities, it highlights the critical success factors of introducing iSSoW on a company-wide basis.


Sign in / Sign up

Export Citation Format

Share Document