scholarly journals Potential of Cool-Season Legumes for Removing Excess P From Poultry Litter Application

HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 605A-605
Author(s):  
D.R. Earhart ◽  
M.L. Baker ◽  
V.A. Haby

Phosphorus (P) concentration in surface waters from non-point agricultural sources is an increasing resource management concern. This study was conducted at Overton, Texas, on a Bowie fine sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) to evaluate cool-season legumes for P uptake following poultry litter (PL) application rates on spring vegetables. Treatments were PL rate (0, 1X, 2X, 4X) and a commercial blend (CB) for comparison. Cool-season legumes, consisting of crimson clover, berseem clover, hairy vetch, and red clover, were the subplots. The vegetable crop in Spring 1995 was watermelon. The 1X PL rate was 2.2 t·ha-1 and the CB was 44.8N-0P-32.5K kg·ha-1. Dry matter yield was decreased by the 4X PL rate. Plant P concentration increased linearly as PL rate was increased. The greatest P uptake (4.1 kg·ha-1) was at the 2X rate. Hairy vetch had the greatest yield (1,875 kg·ha-1), plant P concentration (0.53%), and P uptake (9.6 kg·ha-1). PL rate increased soil P concentration at all depths. The least amount of P accumulation was from CB and was equal to the control. Hairy vetch appears to have the capability of removing a greater amount of P and reducing soil concentration when compared to the other legume species tested.

HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 604F-605
Author(s):  
M.L. Baker ◽  
D.R. Earhart ◽  
V.A. Haby

When poultry litter (PL) is applied to meet the nitrogen (N) needed for plant growth, phosphorus (P) can accumulate, leading to non-point source pollution of surface water. This study was conducted at Overton, Texas on a Bowie fine sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) to investigate the use of warm- and cool-season forage legumes in rotational cropping systems to remove excess P. Cropping systems were: spring legume—fall vegetable (SL-FV), spring vegetable—fall legume (SV-FL), and spring vegetable-fall vegetable (SV-FV). Warm- and cool-season legumes were Iron and Clay cowpea and crimson clover, respectively. Poultry litter rates were 0, 1X, 2X, 4X, and commercial blend (CB) as subplots. Fertility treatments were applied to vegetable plots only. The crop, IX PL and CB rate for each season were: spring 1995—watermelon, 2.2 t·ha-1, 48.8N—12.2P—28K kg·ha-1; fall 1995—turnip, 8.3 t·ha-1, 89.6N—24.4P—28K kg·ha-1; spring 1996—tomato, 6.7 t·ha-1, 100.9N—17.1P—78.5K kg·ha-1. Soil P increased at all depths sampled (0-15, 15-30, and 30-45 cm) as PL rate increased. Residual P from CB was equal to the control. Through spring 1996, soil P concentration in the surface 0-15 cm was increased by all systems. System SV-FL reduced P accumulation by 35.6 mg·kg-1 when compared to SL-FV and 44.7 mg·kg-1 when compared to SV-FV. Residual P continued to increase as PL rate increased. Rate of increase was reduced by a system of SV-FL.


HortScience ◽  
1991 ◽  
Vol 26 (6) ◽  
pp. 759F-759
Author(s):  
W.B. Evans ◽  
D.D. Warncke

Single-plant microplots of `Russet Norkotah' potatoes (Solanum tuberosum L.) were grown outdoors in a 5 × 5 factorial RCBD of indigenous phosphorous level (200, 325, 450, 575, 700 kg·ha-1 Bray-Kurtz Pl extractable; McBride sandy loam) and banded triple super phosphate (0, 50, 100, 150, 200 kg P2O5/ha). Disease in the low P soil that was used to create the four lower P soil blends completely confounds response of the plants across indigenous P levels and might have accentuated responses within levels. Plants responded to fertilizer P with tuber yield increases of 100, 70, 40, and 10 percent within the 200, 325, 450, and 575 indigenous P levels, respectively. Fertilizer P also increased marketable yield and tuber P concentration. Neither indigenous nor fertilizer P altered tuber specific gravity. Companion studies compare the responses of corn (Zea mays L.) and potato to indigenous soil P levels and quantify P uptake among potato cultivars in solution culture.


2003 ◽  
Vol 83 (4) ◽  
pp. 395-403 ◽  
Author(s):  
Z. Zheng ◽  
L. E. Parent ◽  
J. A. MacLeod

The P dynamics in soils should be quantified in agricultural soils to improve fertilizer P (FP) efficiency while limiting the risk of P transfer from soils to water bodies. This study assessed P transformations following FP addition to Gleysolic soils. A pot experiment was conducted with five soils varying in texture from sandy loam to heavy clay, and receiving four FP rates under barley (Hordeum vulgare L.)-soybean (Glycine max L.) rotations. A modified Hedley procedure was used for soil P fractionation. Soil resin-P and NaHCO3-Pi contents were interactively affected by texture and FP. The NaHCO3-Po, NaOH-Po, HCl-P and H2SO4-P were only affected by soil texture. Proportions of 78 and 90% of the variation in labile and total P were, respectively, related to soil clay content. The FP addition increased resin-P, NaHCO3-Pi and NaOH-Pi and -Po contents in coarse-textured soils, but the amount added was not sufficient to mask the initial influence of soil texture on the sizes of soil P pools. Plant P uptake was proportional to FP rate but less closely linked to clay content. The average increase in labile P per unit of total FP added in excess of plant exports was 0.85, 0.8 2 , 0.73, 0.55 and 0.24 for the sandy loam, loam, clay loam, clay and heavy clay soil, respectively. The results of this study stress the important of considering soil texture in Gleysolic soils when assessing P accumulation and transformations in soils, due to commercial fertilizers applied in excess of crop removal. Key words: P fractions, clay content, fertilizer P, plant P uptake, soil texture


Soil Research ◽  
2004 ◽  
Vol 42 (8) ◽  
pp. 913 ◽  
Author(s):  
C. G. Dorahy ◽  
I. J. Rochester ◽  
G. J. Blair

Abstract. Seventeen field experiments were conducted on alkaline soils in eastern Australia between 1997 and 2000 to evaluate irrigated cotton response to phosphorus (P) fertilisation. Only 3 experiments demonstrated significant (P < 0.05) increases in crop P uptake or lint yield with P application. Comparison of several soil P tests revealed that Colwell (bicarbonate) P provided the best correlation with P uptake at early flowering and lint yield. Soil P may limit cotton growth where Colwell-P concentrations are <6 mg/kg. Soil P concentrations at most of the sites were well above this critical limit, so P fertiliser application was not required. Average P uptake at physiological cut-out and P removal in seed cotton was 21 and 15 kg P/ha, respectively. Apparent P fertiliser recovery was variable (0–67%) and may have contributed to the lack of response that was observed in 14 out of the 17 experiments. It is recommended that at least 40 kg P/ha be applied to soils with Colwell-P concentrations <6 mg/kg to increase soil P reserves. Application rates of at least 20 kg P/ha are recommended where Colwell-P falls between 6 and 12 mg/kg to maintain soil P fertility.


HortScience ◽  
1998 ◽  
Vol 33 (4) ◽  
pp. 591a-591
Author(s):  
Clydette Alsup ◽  
Brian A. Kahn

Cowpea [Vigna unguiculata L. (Walp.)] cover crops were grown in a rotation with broccoli (Brassica oleracea L. var. italica Plenck.), spinach (Spinacia oleracea L.), and turnip greens [Brassica rape L. var. (DC.) Metzg. utilis] to evaluate the legume's ability to remove excess P from soils when poultry litter was used as a fertilizer. Fertilizer treatments were litter to meet each crop's recommended preplant N requirements (1X), litter at twice the recommended rate, and urea at the IX rate as the control. Following the vegetable crops, cowpeas were planted on half of each replication, while the other half was fallowed. The cowpeas were harvested for green-shell seeds and then underwent a simulated haying operation. Soil samples were taken at 0-to 15-cm and 15- to 30-cm depths at the onset of the study and after each crop to monitor plant nutrient levels. The cowpeas effectively lowered soil N levels but not soil P levels. However, there was no consistent evidence of an increase in soil P or K levels with litter applications. All three vegetable crops were successfully grown using poultry litter, although the 1X rate appeared inadequate for maximum production of broccoli and turnip greens.


Jurnal Solum ◽  
2008 ◽  
Vol 5 (2) ◽  
pp. 66
Author(s):  
Teguh Budi Prasetyo ◽  
Husnita Husnita ◽  
Irwan Darfis

The main problems of Ultisols are high Al concentration, low pH, low cation exchangeable capacity (CEC), and low fertility.  The objectives of this reasearch were to study the effect of peat water deposit to some chemical properties of Ultisols and to determine the optimal level of peat water deposit for optimum corn yield.  The experimental design was the complete randomized design that consisted of 5 levels of peat water deposit (0, 800, 1600, 2400, and 3200 kg/ha).  The results showed that the application of peat water deposit could reduce exchangeable Al, increase CEC and soil P concentration, P-uptake, and corn yield.  The highest corn yield was obtained at application of 3200 kg peat water deposit /ha.Key Words : Ultisols, peat water precipitation, soil chemical characteristics, corn


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1919
Author(s):  
Terry J. Rose ◽  
Carolyn A. Raymond

A key driver of the current unsustainable global phosphorus (P) cycle is the removal of P from fields in harvested grains. Minimising the concentration of P in grains of staple cereal crops would contribute towards addressing the issue, but it is possible that reducing grain P concentration may impact the vigour of subsequent seedlings. We used a hydroponic method to obtain low- and high-P rice (Oryza sativa L.) seeds from plants grown under near-identical conditions, so that any differences in subsequent seedling growth were likely due to differences in seed P concentrations rather than other seed quality differences that may arise from growing mother plants under different conditions. Seedling biomass production and P uptake were then investigated using high- and low-P seed of four rice genotypes in a P-rich soil and a P-deficient soil in a pot study in a glasshouse. In the P-rich soil, with a history of P fertilisation, with P fertiliser banded below seeds at sowing at 20 kg P ha−1 on a pot surface area basis, seedling biomass and P uptake were significantly affected by genotype (p < 0.05) but not by seed P concentration. In the P-deficient Ferralsol, main effects of seed P concentration, genotype and P fertiliser treatment (nil P, banded P fertiliser, broadcast and incorporated P fertiliser) on seedling biomass were all significant (p < 0.01) with, a significant genotype × P fertiliser treatment interaction. Overall, low-P seed produced less biomass than high-P seed (0.059 vs. 0.067 g plant−1) and nil P fertiliser (0.057 g plant−1) resulted in less biomass than banded P fertiliser and broadcast P fertiliser (0.064 and 0.068 g plant−1, respectively). When two genotypes were re-grown in the P-deficient Ferralsol with P fertiliser banded under the seed at 20 kg P ha−1 there was a significant effect of genotype on shoot biomass (p < 0.001) but only a trend towards lower seedling biomass with low P seed compared to high P seed (p = 0.128). Overall, the results suggest that seed P concentration does not affect seedling vigour when external soil P fertility is sufficiently high, but in P-deficient soils seedling biomass production and P uptake can be reduced by 10–20%. Further research is required to determine whether agronomic interventions including seed P priming or biological seed dressings can mitigate any impacts of lower seed P concentration on seedling vigour in P-deficient soils.


2021 ◽  
Vol 13 (21) ◽  
pp. 11635
Author(s):  
Joaquim José Frazão ◽  
Vinicius de Melo Benites ◽  
Vitor Mateus Pierobon ◽  
João Victor Schiavon Ribeiro ◽  
José Lavres

Inadequate disposal of poultry litter (PL) may promote eutrophication of water bodies due to its high nutrient content, including phosphorus (P). Thus, recycling P from PL to produce organomineral fertilizer (OMF), reduces the dependence on finite mineral P reserves, and also reduces P losses from soil. In this context, a field experiment was carried out to assess the agronomic effectiveness of a granular PL-derived OMF applied to maize and soybean in a highly weathered tropical soil. OMF was compared to single superphosphate (SSP) at five P rates between 0 and 70 kg ha−1. The shoot dry weight (SDW) and grain yields of soybean and maize were affected by P rates; however, no difference between OMF and SSP was found. A similar trend was observed for soil P and P uptake. The leaf P content and soil pH were not affected by either P sources or P rates. Although there was no difference between OMF and SSP on the crop yields, OMF had the highest relative agronomic effectiveness based on the SDW. These results show that the production of granular OMF from PL is a viable alternative to conventional P fertilizers and reduces the dependence of mineral P reserves.


2008 ◽  
Vol 88 (2) ◽  
pp. 363-366 ◽  
Author(s):  
K. R. Sanderson ◽  
L. J. Eaton

Pressure on growers to protect the environment and reduce input costs has increased the need to more effectively use fertilizers. Two experiments were conducted to evaluate the response of wild blueberries to soil-applied P on loamy sand to sandy loam Orthic Podzol soils in Prince Edward Island over three cropping cycles from 1992 to 1997. The sites had soil test (Mehlich-3) P levels from 33 to 44 µg P g-1, which are rated as L- for blueberries in the PEI Soil and Feed Testing Laboratory Standards. Treatments consisted of soil-applied P at 0, 10, 20, 30 and 40 kg ha-1 applied to the same plots in the sprout year in each of three consecutive cropping cycles. There was a positive linear relationship between application rate of P and extractable soil P and leaf tissue P concentration. Over the 6 yr of the study, soil extractable P increased on average 1.1 µg P g-1 for each kg of soil-applied P compared with the control where no soil P was applied. Increases in levels of tissue P concentration were less dramatic. Plant growth and yields were not affected by rate of soil-applied P fertilizer. This study indicates that on sites with low soil test P, application of soil-applied P did not benefit wild blueberry production. By conserving P fertilizer, growers can also reduce the potential for environmental damage caused by the buildup of soil P. Key words: Phosphorus, soil and leaf nutrient concentrations, wild blueberry, Vaccinium angustifolium Ait., yield


2002 ◽  
Vol 53 (10) ◽  
pp. 1165 ◽  
Author(s):  
R. A. Stephenson ◽  
E. C. Gallagher ◽  
P. M. Pepper

Phosphorus fertiliser was applied to mature macadamia trees on 3 plantations with relatively low soil P in south-eastern Queensland at rates of 0, 10, 20, 40, 80, 160, and 320 kg P/ha at El Briale and Como Park and 0, 15, 30, 60, 120, 240, and 480 kg P/ha at Haylock. High rates of P were being applied to macadamias throughout the Australian industry and this study was designed to provide a basis for determining optimum application rates and critical soil P levels. Soil P was 33–199.5, 38.1–267.0, and 62.3–253.0 mg/kg at El Briale, Como Park, and Haylock, respectively. A tentative critical soil P concentration of 84–88 mg/kg was indicated, based on relative yields at El Briale and Haylock. Yield responsiveness to applied P was greatest at Haylock on a heavy soil that may have adsorbed P more readily, and had a higher P buffer capacity, than the lighter soils at the other sites. Leaf P was unresponsive to applied P, and hence soil P in this study. This is of concern since leaf P is used extensively to guide nutrition management. Further work is required to clarify relationships between leaf and soil P concentrations.


Sign in / Sign up

Export Citation Format

Share Document