Pedigree and Pedigree Import Wizard

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 552g-553
Author(s):  
Shahrokh Khandizadeh

Pedigree for Windows is a user-friendly program that allows the user to trace agronomic characteristics, draw pedigrees, and view images of several fruit crops, including more than 1400 apple, 800 strawberry, 800 almond, 100 blackberry, 80 blueberry, 790 pear, 200 raspberry examples. Pedigree Import Wizard®© for Windows is an add-on software for users who are interested in importing their research or breeding data records of fruit, flower, and plant characteristics and any related images into Pedigree for Windows. Pedigree for Windows and Pedigree Import Wizard have been designed so that a user familiar with the Windows operating environment should have little need to refer to the documentation provided with the program. Pedigree Import Wizard uses a comma-separated value (csv) file format under the MS Excel environment. This option allows the user to add or import additional data to the existing database that are already stored in other software such as Lotus, Excel, Access, QuattroPro, WordPerfect, and MS Word tables, etc., as long as they work under the Windows environment. A free demo version of Pedigree and Pedigree Import Wizard for Windows is available from http://www.pgris.com.

2021 ◽  
Author(s):  
Christopher Pockrandt ◽  
Martin Steinegger ◽  
Steven L. Salzberg

AbstractSummaryPhyloCSF++ is an efficient and parallelized C++ implementation of the popular PhyloCSF method to distinguish protein-coding and non-coding regions in a genome based on multiple sequence alignments. It can score alignments or produce browser tracks for entire genomes in the wig file format. Additionally, PhyloCSF++ annotates coding sequences in GFF/GTF files using precomputed tracks or computes and scores multiple sequence alignments on the fly with MMseqs.AvailabilityPhyloCSF++ is released under the AGPLv3 license. Binaries and source code are available at https://github.com/cpockrandt/PhyloCSFpp. The software can be installed through bioconda. A variety of tracks can be accessed through ftp://ftp.ccb.jhu.edu/pub/software/phylocsf++/[email protected], [email protected]


2019 ◽  
Author(s):  
Wenlong Jia ◽  
Hechen Li ◽  
Shiying Li ◽  
Shuaicheng Li

ABSTRACTSummaryVisualizing integrated-level data from genomic research remains a challenge, as it requires sufficient coding skills and experience. Here, we present LandScapeoviz, a web-based application for interactive and real-time visualization of summarized genetic information. LandScape utilizes a well-designed file format that is capable of handling various data types, and offers a series of built-in functions to customize the appearance, explore results, and export high-quality diagrams that are available for publication.Availability and implementationLandScape is deployed at bio.oviz.org/demo-project/analyses/landscape for online use. Documentation and demo data are freely available on this website and GitHub (github.com/Nobel-Justin/Oviz-Bio-demo)[email protected]


2016 ◽  
Author(s):  
Stephen G. Gaffney ◽  
Jeffrey P. Townsend

ABSTRACTSummaryPathScore quantifies the level of enrichment of somatic mutations within curated pathways, applying a novel approach that identifies pathways enriched across patients. The application provides several user-friendly, interactive graphic interfaces for data exploration, including tools for comparing pathway effect sizes, significance, gene-set overlap and enrichment differences between projects.Availability and ImplementationWeb application available at pathscore.publichealth.yale.edu. Site implemented in Python and MySQL, with all major browsers supported. Source code available at github.com/sggaffney/pathscore with a GPLv3 [email protected] InformationAdditional documentation can be found at http://pathscore.publichealth.yale.edu/faq.


2017 ◽  
Author(s):  
Venkata Manem ◽  
George Adam ◽  
Tina Gruosso ◽  
Mathieu Gigoux ◽  
Nicholas Bertos ◽  
...  

ABSTRACTBackground:Over the last several years, we have witnessed the metamorphosis of network biology from being a mere representation of molecular interactions to models enabling inference of complex biological processes. Networks provide promising tools to elucidate intercellular interactions that contribute to the functioning of key biological pathways in a cell. However, the exploration of these large-scale networks remains a challenge due to their high-dimensionality.Results:CrosstalkNet is a user friendly, web-based network visualization tool to retrieve and mine interactions in large-scale bipartite co-expression networks. In this study, we discuss the use of gene co-expression networks to explore the rewiring of interactions between tumor epithelial and stromal cells. We show how CrosstalkNet can be used to efficiently visualize, mine, and interpret large co-expression networks representing the crosstalk occurring between the tumour and its microenvironment.Conclusion:CrosstalkNet serves as a tool to assist biologists and clinicians in exploring complex, large interaction graphs to obtain insights into the biological processes that govern the tumor epithelial-stromal crosstalk. A comprehensive tutorial along with case studies are provided with the application.Availability:The web-based application is available at the following location: http://epistroma.pmgenomics.ca/app/. The code is open-source and freely available from http://github.com/bhklab/EpiStroma-webapp.Contact:[email protected]


2019 ◽  
Author(s):  
Andrew Webb ◽  
Jared Knoblauch ◽  
Nitesh Sabankar ◽  
Apeksha Sukesh Kallur ◽  
Jody Hey ◽  
...  

AbstractHere we present the Pop-Gen Pipeline Platform (PPP), a software platform with the goal of reducing the computational expertise required for conducting population genomic analyses. The PPP was designed as a collection of scripts that facilitate common population genomic workflows in a consistent and standardized Python environment. Functions were developed to encompass entire workflows, including: input preparation, file format conversion, various population genomic analyses, output generation, and visualization. By facilitating entire workflows, the PPP offers several benefits to prospective end users - it reduces the need of redundant in-house software and scripts that would require development time and may be error-prone, or incorrect. The platform has also been developed with reproducibility and extensibility of analyses in mind. The PPP is an open-source package that is available for download and use at https://ppp.readthedocs.io/en/latest/PPP_pages/install.html


Author(s):  
Frédéric Lemoine ◽  
Luc Blassel ◽  
Jakub Voznica ◽  
Olivier Gascuel

AbstractMotivationThe first cases of the COVID-19 pandemic emerged in December 2019. Until the end of February 2020, the number of available genomes was below 1,000, and their multiple alignment was easily achieved using standard approaches. Subsequently, the availability of genomes has grown dramatically. Moreover, some genomes are of low quality with sequencing/assembly errors, making accurate re-alignment of all genomes nearly impossible on a daily basis. A more efficient, yet accurate approach was clearly required to pursue all subsequent bioinformatics analyses of this crucial data.ResultshCoV-19 genomes are highly conserved, with very few indels and no recombination. This makes the profile HMM approach particularly well suited to align new genomes, add them to an existing alignment and filter problematic ones. Using a core of ∼2,500 high quality genomes, we estimated a profile using HMMER, and implemented this profile in COVID-Align, a user-friendly interface to be used online or as standalone via Docker. The alignment of 1,000 genomes requires less than 20mn on our cluster. Moreover, COVID-Align provides summary statistics, which can be used to determine the sequencing quality and evolutionary novelty of input genomes (e.g. number of new mutations and indels).Availabilityhttps://covalign.pasteur.cloud, hub.docker.com/r/evolbioinfo/[email protected], [email protected] informationSupplementary information is available at Bioinformatics online.


2018 ◽  
pp. 1-5
Author(s):  
Wessam M. Rslan

Date palm (Phoenix dactylifera L.) is among the earliest fruit crops cultivated in the arid Arab Peninsula, North Africa, and Middle East territories. Dates are a significant source of food and revenue for Middle East and North Africa's local communities. It has distinctive features of biology and development that require special methods of reproduction, culture and governance. In varying date-growing regions, there are thousands of date plant cultivars and varieties. The lengthy life cycle, long juvenile lifespan, and date palm dioecism produce cultivation difficult. Every year, the percentage of crop genomes sequenced has continued to increase. The incredible rate at which DNA samples become accessible is mainly due to the enhancement in cost-and speed-related sequencing techniques. Modern sequencing techniques enable the sequencing at realistic price of various cultivars of tiny plant genomes. Although many of the published genomes are deemed incomplete, they have nevertheless proven to be useful instruments for understanding significant plant characteristics such as fruit maturation, grain characteristics and adaptation of flowering time, here we review date palm genomic studies and determine its genomics element.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Marius Welzel ◽  
Anja Lange ◽  
Dominik Heider ◽  
Michael Schwarz ◽  
Bernd Freisleben ◽  
...  

Abstract Background Sequencing of marker genes amplified from environmental samples, known as amplicon sequencing, allows us to resolve some of the hidden diversity and elucidate evolutionary relationships and ecological processes among complex microbial communities. The analysis of large numbers of samples at high sequencing depths generated by high throughput sequencing technologies requires efficient, flexible, and reproducible bioinformatics pipelines. Only a few existing workflows can be run in a user-friendly, scalable, and reproducible manner on different computing devices using an efficient workflow management system. Results We present Natrix, an open-source bioinformatics workflow for preprocessing raw amplicon sequencing data. The workflow contains all analysis steps from quality assessment, read assembly, dereplication, chimera detection, split-sample merging, sequence representative assignment (OTUs or ASVs) to the taxonomic assignment of sequence representatives. The workflow is written using Snakemake, a workflow management engine for developing data analysis workflows. In addition, Conda is used for version control. Thus, Snakemake ensures reproducibility and Conda offers version control of the utilized programs. The encapsulation of rules and their dependencies support hassle-free sharing of rules between workflows and easy adaptation and extension of existing workflows. Natrix is freely available on GitHub (https://github.com/MW55/Natrix) or as a Docker container on DockerHub (https://hub.docker.com/r/mw55/natrix). Conclusion Natrix is a user-friendly and highly extensible workflow for processing Illumina amplicon data.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Rudi Alberts ◽  
Jinyu Chen ◽  
Louxin Zhang

Abstract Background Inference of cancer-causing genes and their biological functions are crucial but challenging due to the heterogeneity of somatic mutations. The heterogeneity of somatic mutations reveals that only a handful of oncogenes mutate frequently and a number of cancer-causing genes mutate rarely. Results We develop a Cytoscape app, named ZDOG, for visualization of the extent to which mutated genes may affect cancer pathways using the dominating tree model. The dominator tree model allows us to examine conveniently the positional importance of a gene in cancer signalling pathways. This tool facilitates the identification of mutated “master” regulators even with low mutation frequency in deregulated signalling pathways. Conclusions We have presented a model for facilitating the examination of the extent to which mutation in a gene may affect downstream components in a signalling pathway through its positional information. The model is implemented in a user-friendly Cytoscape app which will be freely available upon publication. Availability Together with a user manual, the ZDOG app is freely available at GitHub (https://github.com/rudi2013/ZDOG). It is also available in the Cytoscape app store (http://apps.cytoscape.org/apps/ZDOG) and users can easily install it using the Cytoscape App Manager.


2020 ◽  
Author(s):  
Kumari Sonal Choudhary ◽  
Eoin Fahy ◽  
Kevin Coakley ◽  
Manish Sud ◽  
Mano R Maurya ◽  
...  

ABSTRACTWith the advent of high throughput mass spectrometric methods, metabolomics has emerged as an essential area of research in biomedicine with the potential to provide deep biological insights into normal and diseased functions in physiology. However, to achieve the potential offered by metabolomics measures, there is a need for biologist-friendly integrative analysis tools that can transform data into mechanisms that relate to phenotypes. Here, we describe MetENP, an R package, and a user-friendly web application deployed at the Metabolomics Workbench site extending the metabolomics enrichment analysis to include species-specific pathway analysis, pathway enrichment scores, gene-enzyme information, and enzymatic activities of the significantly altered metabolites. MetENP provides a highly customizable workflow through various user-specified options and includes support for all metabolite species with available KEGG pathways. MetENPweb is a web application for calculating metabolite and pathway enrichment analysis.Availability and ImplementationThe MetENP package is freely available from Metabolomics Workbench GitHub: (https://github.com/metabolomicsworkbench/MetENP), the web application, is freely available at (https://www.metabolomicsworkbench.org/data/analyze.php)


Sign in / Sign up

Export Citation Format

Share Document