scholarly journals Physical Properties of Biocontainers Used to Grow Long-term Greenhouse Crops in an Ebb-and-flood Irrigation System

HortScience ◽  
2013 ◽  
Vol 48 (6) ◽  
pp. 732-737 ◽  
Author(s):  
Stephanie A. Beeks ◽  
Michael R. Evans

The physical properties of new 15.2-cm plastic and comparably sized bioplastic, solid ricehull, slotted ricehull, paper, peat, dairy manure, wood fiber, rice straw, and coconut fiber containers were determined. Additionally, the physical properties of these containers were determined after being used to grow ‘Rainier Purple’ cyclamen (Cyclamen persicum L.) in ebb-and-flood benches for 15 weeks in a greenhouse environment. The punch strength of new coconut fiber containers was the highest of the containers. The used plastic containers had strengths of 228.0, 230.5, and 215.2 N for the bottom, middle, and top zones, respectively. The used peat, dairy manure, and wood fiber containers had strengths of less than 15 N for each zone. Tensile strength of all new containers was 10 kg. The plastic, bioplastic, solid ricehull, slotted ricehull, paper, and coconut fiber containers had used strengths that were similar to plastic containers. Total water used for wood fiber containers was higher than plastic containers. Irrigation intervals for plastic containers were similar to bioplastic, solid ricehull, slotted ricehull, paper, and coconut fiber containers. The irrigation interval for plastic containers was 1.32 days and the wood fiber container had the shortest irrigation interval at 0.61 day. Container absorption for coconut fiber containers was 255 mL and was higher than plastic containers. Wood fiber container absorption was 141 mL and lower than plastic containers. Plastic, bioplastic, solid ricehull, and slotted ricehull containers had no visible algal or fungal growth. The wood fiber containers had 79% of the container walls covered with algae or fungi and the bottom and middle zones had 100% algae or fungi coverage. The bottom zone of rice straw, dairy manure, and peat containers also had 100% algae or fungi coverage. The bioplastic, solid ricehull, and slotted ricehull containers in this study proved to be good substitutes for plastic containers. These containers retained high levels of punch and tensile strength, had no algal and fungal growth, and required a similar amount of solution as the plastic containers to grow a cyclamen crop. The peat, dairy manure, wood fiber, and rice straw containers proved not to be appropriate substitutes for plastic containers because of the low used strengths, high percentage of algal and fungal coverage, and shorter irrigation intervals as compared with plastic containers.

2015 ◽  
Vol 25 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Michael R. Evans ◽  
Andrew K. Koeser ◽  
Guihong Bi ◽  
Susmitha Nambuthiri ◽  
Robert Geneve ◽  
...  

Nine commercially available biocontainers and a plastic control were evaluated at Fayetteville, AR, and Crystal Springs, MS, to determine the irrigation interval and total water required to grow a crop of ‘Cooler Grape’ vinca (Catharanthus roseus) with or without the use of plastic shuttle trays. Additionally, the rate at which water passed through the container wall of each container was assessed with or without the use of a shuttle tray. Slotted rice hull, coconut fiber, peat, wood fiber, dairy manure, and straw containers were constructed with water-permeable materials or had openings in the container sidewall. Such properties increased the rate of water loss compared with more impermeable bioplastic, solid rice hull, and plastic containers. This higher rate of water loss resulted in most of the biocontainers having a shorter irrigation interval and a higher water requirement than traditional plastic containers. Placing permeable biocontainers in plastic shuttle trays reduced water loss through the container walls. However, irrigation demand for these containers was still generally higher than that of the plastic control containers.


2013 ◽  
Vol 23 (2) ◽  
pp. 173-176 ◽  
Author(s):  
Stephanie A. Beeks ◽  
Michael R. Evans

The objective for this research was to evaluate the growth of a long-term crop in biodegradable containers compared with traditional plastic containers using a subirrigation system. Plastic, bioplastic, solid ricehull, slotted ricehull, paper, peat, dairy manure, wood fiber, rice straw, and coconut fiber containers were used to evaluate plant growth of ‘Rainier Purple’ cyclamen (Cyclamen persicum) in ebb-and-flood subirrigation benches. The days to flower ranged from 70 to 79 and there were no significant differences between the plastic containers and the biocontainers. The dry shoot weights ranged from 23.9 to 37.4 g. Plants grown in plastic containers had dry shoot weights of 27.6 g. The dry shoot weight of plants grown in containers composed of wood fiber was 23.9 g and was lower than plants grown in plastic containers. The plants grown in the bioplastic, solid ricehull, slotted ricehull, paper, peat, dairy manure, rice straw, and coconut fiber containers had significantly higher dry shoot weights than plants grown in plastic containers. Dry root weights ranged from 3.0 to 4.0 g. The plants grown in the plastic containers had dry root weights of 3.0 g. Plants grown in paper and wood fiber containers had higher dry root weights than those grown in plastic containers. The only container that negatively affected plant growth was the wood fiber container. Plants preformed the best in solid ricehull, slotted ricehull, and coconut fiber containers based on dry shoot and dry root weights, but all containers were successfully used to produce marketable cyclamen plants.


2010 ◽  
Vol 20 (3) ◽  
pp. 549-555 ◽  
Author(s):  
Michael R. Evans ◽  
Matt Taylor ◽  
Jeff Kuehny

The vertical dry strength of rice hull containers was the highest of all containers tested. Plastic containers and paper containers had similar vertical dry strengths. Containers composed of 80% cedar fiber and 20% peat (Fertil), composted dairy manure (Cowpot), and peat had lower dry vertical dry strengths than the aforementioned containers but had higher vertical dry strengths than those composed of bioplastic (OP47), coconut fiber, and rice straw. Rice hull containers and paper containers had the highest lateral dry strengths. Rice straw, Cowpot, and plastic containers had similar dry lateral strengths, which were significantly higher than those of OP47, Fertil, coconut fiber, and peat containers. Highest dry punch strengths occurred with traditional plastic and Cowpot containers, while the lowest dry punch strengths occurred with OP47, Fertil, coconut fiber, peat, and rice straw containers. Plastic, rice hull, and paper containers had the highest wet vertical and lateral strengths. Plastic containers had the highest wet punch strength, while Fertil, Cowpot, and peat containers had the lowest wet punch strengths. When saturated substrate was placed into containers and the substrate surface and drainage holes were sealed with wax, plastic, OP47, and rice hull containers had the lowest rates of water loss per unit of container surface area, while peat, Fertil, and rice straw containers had the highest rates of water loss per unit of container surface area. The amounts of water required to produce a geranium (Pelargonium ×hortorum) crop were significantly higher and the average irrigation intervals were shorter for peat, Fertil, coconut fiber, Cowpot, and rice straw containers than for traditional plastic containers. The amounts of water required to produce a geranium crop and the average irrigation intervals were similar among plastic, rice hull, and OP47 containers. Algal and fungal coverage on the outside container walls averaged 47% and 26% for peat and Fertil containers, respectively, and was higher than for all other containers tested, which had 4% or less algal and fungal coverage. After 8 weeks in the field, Cowpot containers had decomposed 62% and 48% in the Pennsylvania and Louisiana locations, respectively. Peat, rice straw, and Fertil containers decomposed 32%, 28%, and 24%, respectively, in Pennsylvania, and 10%, 9%, and 2%, respectively, in Louisiana. Coconut fiber containers had the lowest level of decomposition at 4% and 1.5% in Pennsylvania and Louisiana, respectively.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 8258-8272
Author(s):  
Yang Zhao ◽  
Qinpeng Shen ◽  
Yuanxin Duan ◽  
Shuyin Wu ◽  
Ping Lei ◽  
...  

Polylactic acid is a biodegradable thermoplastic polyester derived from renewable polysaccharides. In this work, softwood fibers were used to reinforce the paper sheet made from polylactic acid fibers, thus addressing the challenges regarding low density, rough surface, and weak strength. The impact of wood fibers and calendering on the physical properties (density, roughness, tensile strength, and folding endurance) of the composite paper were identified. Furthermore, the morphology of papers with different fiber contents and those that had been calendered was characterized with a scanning electron microscope. The use of wood fibers resulted in the improvement of the physical properties of the polylactic acid paper, and the enhanced refining of wood fibers had a favorable role in improving paper density, smoothness, and mechanical strength. The tensile index increased 37.9% when the beating degree of wood fibers increased from 25 to 60 °SR. After calendering, the density, smoothness, tensile strength, folding endurance, and air barrier property of the paper were improved 60.2%, 45.8%, 15.5%, 148.1%, and 79.4%, respectively. The calendering-based papermaking process involving the combined use of wood fibers and polylactic acid fibers would be a promising strategy for designing composite materials for tailorable end-uses.


Alloy Digest ◽  
2007 ◽  
Vol 56 (2) ◽  

Abstract Durimphy is a maraging steel with 1724 MPa (250 ksi) tensile strength and a very high yield strength due to precipitation hardening. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: FE-140. Producer or source: Metalimphy Precision Alloys.


Alloy Digest ◽  
1981 ◽  
Vol 30 (8) ◽  

Abstract CENTRI-CAST GRAY IRON 50 is a centrifugally cast gray iron with a nominal tensile strength of 50,000 psi. It is cast in the form of tubing which has a wide range of uses in applications where size and shape are of paramount importance and freedom from pattern cost is an important consideration. Among its many applications are farm machinery, seals, bushings, machine tools and general machinery uses. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on casting, heat treating, machining, and surface treatment. Filing Code: CI-51. Producer or source: Federal Bronze Products Inc..


Alloy Digest ◽  
1979 ◽  
Vol 28 (9) ◽  

Abstract CENTRI-CAST GRAY IRON 55 is a centrifugally cast gray iron with a nominal tensile strength of 55,000 psi. It is produced in the form of tubing which has a wide range of uses in applications where size and shape are of paramount importance and freedom from pattern cost is an important consideration. Typical applications are seals, bushings, farm machinery, casings and general machinery uses. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on casting, heat treating, machining, and surface treatment. Filing Code: CI-48. Producer or source: Federal Bronze Products Inc..


Alloy Digest ◽  
2011 ◽  
Vol 60 (8) ◽  

Abstract Wieland-FX9 is a high-manganese bronze alloy that has good strength and is available in numerous cold work tempers related to its minimum tensile strength. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: Cu-801. Producer or source: Wieland Metals Inc..


Alloy Digest ◽  
2010 ◽  
Vol 59 (12) ◽  

Abstract Dogal 600 and 800 DP are high-strength steels with a microstructure that contains ferrite, which is soft and formable, and martensite, which is hard and contributes to the strength of the steel. The designation relates to the lowest tensile strength. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on forming, joining, and surface treatment. Filing Code: CS-160. Producer or source: SSAB Swedish Steel Inc. and SSAB Swedish Steel.


Alloy Digest ◽  
2020 ◽  
Vol 69 (9) ◽  

Abstract Lucefin Group C30, C30E, and C30R are medium-carbon, non-alloy steels that are used in the normalized, cold worked, or quenched and tempered condition. C30E and C30R may also be flame or induction hardened. C30, C30E, and C30R are widely used for small, moderately stressed parts, where higher strength levels are needed than can be achieved in the lower carbon grades, and also where toughness is more important than high tensile strength. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: CS-206. Producer or source: Lucefin S.p.A.


Sign in / Sign up

Export Citation Format

Share Document