scholarly journals An Examination of the Economics of Sustainable and Conventional Horticulture

2000 ◽  
Vol 10 (4) ◽  
pp. 687-691
Author(s):  
Robin G. Brumfield

Since World War II, U.S. agriculture has reduced production costs by substituting petrochemicals for labor. Adverse impacts from chemical intensive agriculture include increased pest levels, groundwater and surface water contamination, soil erosion, and concerns about harmful levels of pesticide residues. Sustainable farming programs such as integrated crop management (ICM) and organic farming encourage farmers to use systems that reduce the adverse impacts of chemical agriculture. However, before farmers adopt an alternative system, they must determine that economic benefits from the alternative farming activities exceed the costs incurred. Unfortunately, relatively few studies have compared the cost of organic crop production with conventional production systems. Results of these studies are mixed. In some studies, organic systems are more profitable than conventional systems with organic price premiums, but are not economically viable without price premiums. In one long-term study, the organic system was more profitable than a conventional one if the cost of family labor was ignored, but less profitable if it was included. In some studies, net returns were higher for ICM than for conventional or organic systems, but in others, they were higher. Results also vary on a crop by crop basis.

2016 ◽  
Vol 22 (1-2) ◽  
Author(s):  
P. Dremák ◽  
Á. Csihon ◽  
I. Gonda

Success of apple production is highly influenced by the applied production system and the planted cultivar. In this paper growing characteristics of 39 apple cultivars were studied in integrated and organic production systems. These kind of parameters are less studied in the cultivar and training system examinations, although they have huge effect on the training and maintaining of canopy, on the pruning necessity, ultimately on the production costs. According to our results the thickness of the central axis of apple trees showed significant differences between the integrated and the organic systems. Axis of the trees with lower trunk thickness tapers more slightly in the integrated production system, than in the case of the trees with thicker trunk in the organic system. Thicker axis is not accompanied by thicker trunk, namely the thickness of the central leader starts to decrease stronger in the organic production system, compared to the integrated one.


2012 ◽  
Vol 52 (4) ◽  
pp. 486-493 ◽  
Author(s):  
Beata Feledyn-Szewczyk

Abstract The research was conducted from 2008 to 2010, and compared the influence of different weed control methods used in spring wheat on the structure of the weed communities and the crop yield. The study was carried out at the Experimental Station of the Institute of Soil Science and Plant Cultivation - State Research Institute in Osiny as part of a long-term trial where these crop production systems had been compared since 1994. In the conventional and integrated systems, spring wheat was grown in a pure stand, whereas in the organic system, the wheat was grown with undersown clover and grasses. In the conventional system, herbicides were applied two times in a growing season, but in the integrated system - only once. The effectiveness of weed management was lower in the organic system than in other systems, but the dry matter of weeds did not exceed 60 g/m2. In the integrated system, the average dry matter of weeds in spring wheat was 4 times lower, and in the conventional system 10 times lower than in the organic system. Weed diversity was the largest in spring wheat cultivated in the organic system. In the conventional and integrated systems, compensation of some weed species was observed (Viola arvensis, Fallopia convolvulus, Equisetum arvense). The comparison of weed communities using Sorenson’s indices revealed more of a similarity between systems in terms of number of weed species than in the number of individuals. Such results imply that qualitative changes are slower than quantitative ones. The yield of grain was the biggest in the integrated system (5.5 t/ha of average). It was 35% higher than in the organic system, and 20% higher than in conventional ones.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 675 ◽  
Author(s):  
Feledyn-Szewczyk ◽  
Radzikowski ◽  
Stalenga ◽  
Matyka

The purpose of the study was to compare earthworm communities under winter wheat in different crop production systems on arable land—organic (ORG), integrated (INT), conventional (CON), monoculture (MON)—and under perennial crops cultivated for energy purposes—willow (WIL), Virginia mallow (VIR), and miscanthus (MIS). Earthworm abundance, biomass, and species composition were assessed each spring and autumn in the years 2014–2016 using the method of soil blocks. The mean species number of earthworms was ordered in the following way: ORG > VIR > WIL > CON > INT > MIS > MON. Mean abundance of earthworms decreased in the following order: ORG > WIL > CON > VIR > INT > MIS > MON. There were significantly more species under winter wheat cultivated organically than under the integrated system (p = 0.045), miscanthus (p = 0.039), and wheat monoculture (p = 0.002). Earthworm abundance was significantly higher in the organic system compared to wheat monoculture (p = 0.001) and to miscanthus (p = 0.008). Among the tested energy crops, Virginia mallow created the best habitat for species richness and biomass due to the high amount of crop residues suitable for earthworms and was similar to the organic system. Differences in the composition of earthworm species in the soil under the compared agricultural systems were proven. Energy crops, except miscanthus, have been found to increase earthworm diversity, as they are good crops for landscape diversification.


Animals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 473 ◽  
Author(s):  
Luuk S.M. Vissers ◽  
Ingrid C. de Jong ◽  
Peter L.M. van Horne ◽  
Helmut W. Saatkamp

In the 2000s, the idea of a so-called middle-segment arose in North-West Europe to address the criticism on intensive broiler production systems. Middle-segment systems being indoor housing of slower-growing broiler strains at a stocking density ≤38 kg/m2. Previous literature showed that Dutch middle-segment systems entail a relatively large gain in animal welfare at a relatively low increase in costs, i.e., have a high cost-efficiency. The question is to what extent these findings are applicable to other countries. Therefore, the aim of this study is to gain insight in the global prospects of middle-segment systems by exploring the cost-efficiency of these systems in other parts of the world. A set of representative countries, containing the Netherlands, United States and Brazil were selected. Cost-efficiency was defined as the ratio of the change in the level of animal welfare and the change in production costs. The level of animal welfare was measured by the Welfare Quality (WQ) index score. Data was collected from literature and consulting experts. Results show that in the Netherlands, United States and Brazil a change from conventional towards a middle-segment system improves animal welfare in a cost-efficient manner (the Netherlands 9.1, United States 24.2 and Brazil 12.1). Overall, it can be concluded that in general middle-segment production systems provide a considerable increase in animal welfare at a relatively small increase in production costs and therefore offer good prospects for a cost-efficient improvement of broiler welfare.


Weed Science ◽  
1975 ◽  
Vol 23 (3) ◽  
pp. 253-263 ◽  

The phenoxy herbicides, 2,4-D, 2,4,5-T, MCPA, silvex and related materials, are selective herbicides widely used in crop production and in the management of forests, ranges and industrial, urban and aquatic sites. These chemicals are related to naturally occurring plant growth regulators. They kill plants by causing malfunctions in growth processes. Broad-leaved plants are generally susceptible to the phenoxy herbicides, whereas most grasses, coniferous trees and certain legumes are relatively resistant.The phenoxy herbicides are used to control broad-leaved weeds in wheat, barley, rice, oats, rye, corn, grain sorghums and certain legumes. Such uses increase yields, improve product quality and reduce production costs. The phenoxy herbicides are used in forests to suppress unwanted hardwood trees and brush, to reduce competition with conifers already established or to prepare sites for the regeneration of conifers. They are used on grazing lands to control unpalatable and noxious plants and to kill brush and small trees that reduce the productivity of pastures and ranges. 2,4-D and other phenoxys are used in canals, ponds, lakes and waterways to kill floating weeds such as water hyacinth, submerged weeds such as pond-weeds, and emergent and shoreline plants such as cattails and willows. Industrial and urban uses include control of brush on utility and transportation rights of way, control of dandelions, plantains and other weeds in turf and suppression of ragweed, poison ivy and other plants of public health importance.The principal hazard in the use of the phenoxys is to crops and other valuable plants either within the treated area or nearby. Treated crops and forest trees can be injured through accidental overdosing, improper timing of treatments, unusual weather conditions and other causes. Injury to nearby crops and ornamentals can result from drift of droplets or vapors of the spray. Such losses are largely preventable through the use of proper formulations and spray equipment and the exercise of good judgment.The phenoxy herbicides are predominantly toxic to green plants and are much less toxic to mammals, birds, fish, reptiles, shellfish, insects, worms, fungi and bacteria. When properly used, they do not occur in soils and water at levels harmful to animals and microorganisms. They do not concentrate in food chains and do not persist from year to year in croplands. They are detectable only rarely in food and then only in insignificant amounts.A highly poisonous kind of dioxin called TCDD is an unavoidable contaminant in commercial supplies of 2,4,5-T and silvex. The amount present in currently produced formulations of 2,4,5-T and silvex is not enough to alter the toxicological properties of these preparations or to endanger human health or to affect plants or animals in the environment.The phenoxy herbicides are widely used because they are more efficient and usually less hazardous and less injurious to the environment than alternative methods. Use of these chemicals is estimated to reduce the cost of production of the crops on which they are used by about 5% and to reduce overall agricultural production costs in the United States by about 1%. Uses in forests and nonagricultural situations provide additional savings. If the phenoxys were no longer available, the cost of food, forest products, electric power, transportation and governmental services would be higher. These costs would be borne by consumers.


2009 ◽  
Vol 24 (2) ◽  
pp. 102-119 ◽  
Author(s):  
Michel A. Cavigelli ◽  
Beth L. Hima ◽  
James C. Hanson ◽  
John R. Teasdale ◽  
Anne E. Conklin ◽  
...  

AbstractInterest in organic grain production is increasing in the United States but there is limited information regarding the economic performance of organic grain and forage production in the mid-Atlantic region. We present the results from enterprise budget analyses for individual crops and for complete rotations with and without organic price premiums for five cropping systems at the US Department of Agriculture–Agricultural Research Service (USDA–ARS) Beltsville Farming Systems Project (FSP) from 2000 to 2005. The FSP is a long-term cropping systems trial established in 1996 to evaluate the sustainability of organic and conventional grain crop production. The five FSP cropping systems include a conventional, three-year no-till corn (Zea maysL.)–rye (Secale cerealeL.) cover crop/soybean (Glycine max(L.) Merr)–wheat (Triticum aestivumL.)/soybean rotation (no-till (NT)), a conventional, three-year chisel-till corn–rye/soybean–wheat/soybean rotation (chisel tillage (CT)), a two-year organic hairy vetch (Vicia villosaRoth)/corn–rye/soybean rotation (Org2), a three-year organic vetch/corn–rye/soybean–wheat rotation (Org3) and a four- to six-year organic corn–rye/soybean–wheat–red clover (Trifolium pratenseL.)/orchard grass (Dactylis glomerataL.) or alfalfa (Medicago sativaL.) rotation (Org4+). Economic returns were calculated for rotations present from 2000 to 2005, which included some slight changes in crop rotation sequences due to weather conditions and management changes; additional analyses were conducted for 2000 to 2002 when all crops described above were present in all organic rotations. Production costs were, in general, greatest for CT, while those for the organic systems were lower than or similar to those for NT for all crops. Present value of net returns for individual crops and for full rotations were greater and risks were lower for NT than for CT. When price premiums for organic crops were included in the analysis, cumulative present value of net returns for organic systems (US$3933 to 5446 ha−1, 2000 to 2005; US$2653 to 2869 ha−1, 2000 to 2002) were always substantially greater than for the conventional systems (US$1309 to 1909 ha−1, 2000 to 2005; US$634 to 869 ha−1, 2000 to 2002). With price premiums, Org2 had greater net returns but also greater variability of returns and economic risk across all years than all other systems, primarily because economic success of this short rotation was highly dependent on the success of soybean, the crop with the highest returns. Soybean yield variability was high due to the impact of weather on the success of weed control in the organic systems. The longer, more diverse Org4+ rotation had the lowest variability of returns among organic systems and lower economic risk than Org2. With no organic price premiums, economic returns for corn and soybean in the organic systems were generally lower than those for the conventional systems due to lower grain yields in the organic systems. An exception to this pattern is that returns for corn in Org4+ were equal to or greater than those in NT in four of six years due to both lower production costs and greater revenue than for Org2 and Org3. With no organic premiums, present value of net returns for the full rotations was greatest for NT in 4 of 6 years and greatest for Org4+ the other 2 years, when returns for hay crops were high. Returns for individual crops and for full rotations were, in general, among the lowest and economic risk was, in general, among the highest for Org2 and Org3. Results indicate that Org4+, the longest and most diverse rotation, had the most stable economic returns among organic systems but that short-term returns could be greatest with Org2. This result likely explains, at least in part, why some organic farmers in the mid-Atlantic region, especially those recently converting to organic methods, have adopted this relatively short rotation. The greater stability of the longer rotation, by contrast, may explain why farmers who have used organic methods for longer periods of time tend to favor rotations that include perennial forages.


2015 ◽  
Vol 25 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Robin G. Brumfield ◽  
Alyssa J. DeVincentis ◽  
Xueni Wang ◽  
R. Thomas Fernandez ◽  
Susmitha Nambuthiri ◽  
...  

As high-input systems, plant production facilities for liner and container plants use large quantities of water, fertilizers, chemical pesticides, plastics, and labor. The use of renewable and biodegradable inputs for growing aesthetically pleasing and healthy plants could potentially improve the economic, environmental, and social sustainability of current production systems. However, costs for production components to integrate sustainable practices into established systems have not been fully explored to date. Our objectives were to determine the economic costs of commercial production systems using alternative containers in aboveground nursery systems. We determined the cost of production (COP) budgets for two woody plant species grown in several locations across the United States. Plants were grown in plastic pots and various alternative pots made from wood pulp (WP), fabric (FB), keratin (KT), and coconut fiber (coir). Cost of production inputs for aboveground nursery systems included the plant itself (liner), liner shipping costs, pot, pot shipping costs, substrate, substrate shipping costs, municipal water, and labor. Our results show that the main difference in the COP is the price of the pot. Although alternative containers could potentially increase water demands, water is currently an insignificant cost in relation to the entire production process. Use of alternative containers could reduce the carbon, water, and chemical footprints of nurseries and greenhouses; however, the cost of alternative containers must become more competitive with plastic to make them an acceptable routine choice for commercial growers.


10.12737/7736 ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. 23-28
Author(s):  
Закиров ◽  
Zufar Zakirov ◽  
Закирова ◽  
Alsu Zakirova ◽  
Клычова ◽  
...  

In modern conditions agricultural enterprises activity is affected by the organization of management, which provides economic independence of business entities, their competitiveness and return on production costs. In turn, the effectiveness of management is affected by the efficiency and adequacy of accounting information, which is received by the administrative and management personnel. The term of calculation, due to its versatility, is of a great interest on the part of scholars and practitioners. On the one hand, calculation is represented as a set of techniques of analytical accounting of expenses for production and calculation of the cost of production, on the other hand, it is presented as a component of cost accounting. All this shows, that this term includes various aspects, related to the development and acquisition of information about the production process, its costs and results. This information is undoubtedly important with the development of production activities of agricultural organization. Despite the rather close attention to the issues of cost accounting and calculation of the cost of agricultural production, there is a need to study in detail and further improvement of cost accounting and calculation of the cost of agricultural production in the management system of agricultural organization. The paper deals with the selection of objects for accounting of production, calculation facilities and calculation units in horse breeding. A method of calculating the cost of horse-breeding products was also provided. Simultaneous use of modern information technology will significantly reduce labor costs, compared to manual processing of accounting information


2011 ◽  
Vol 27 (3) ◽  
pp. 200-216 ◽  
Author(s):  
Sam E. Wortman ◽  
Tomie D. Galusha ◽  
Stephen C. Mason ◽  
Charles A. Francis

AbstractOrganic agriculture aims to build soil quality and provide long-term benefits to people and the environment; however, organic practices may reduce crop yields. This long-term study near Mead, NE was conducted to determine differences in soil fertility and crop yields among conventional and organic cropping systems between 1996 and 2007. The conventional system (CR) consisted of corn (Zea maysL.) or sorghum (Sorghum bicolor(L.) Moench)–soybean (Glycine max(L.) Merr.)–sorghum or corn–soybean, whereas the diversified conventional system (DIR) consisted of corn or sorghum–sorghum or corn–soybean–winter wheat (wheat,Triticum aestivumL.). The animal manure-based organic system (OAM) consisted of soybean–corn or sorghum–soybean–wheat, while the forage-based organic system (OFG) consisted of alfalfa (Medicago sativaL.)–alfalfa–corn or sorghum–wheat. Averaged across sampling years, soil organic matter content (OMC), P, pH, Ca, K, Mg and Zn in the top 15 cm of soil were greatest in the OAM system. However, by 2008 OMC was not different between the two organic systems despite almost two times greater carbon inputs in the OAM system. Corn, sorghum and soybean average annual yields were greatest in either of the two conventional systems (7.65, 6.36 and 2.60 Mg ha−1, respectively), whereas wheat yields were greatest in the OAM system (3.07 Mg ha−1). Relative to the mean of the conventional systems, corn yields were reduced by 13 and 33% in the OAM and OFG systems, respectively. Similarly, sorghum yields in the OAM and OFG systems were reduced by 16 and 27%, respectively. Soybean yields were 20% greater in the conventional systems compared with the OAM system. However, wheat yields were 10% greater in the OAM system compared with the conventional DIR system and 23% greater than yield in the OFG system. Alfalfa in the OFG system yielded an average of 7.41 Mg ha−1annually. Competitive yields of organic wheat and alfalfa along with the soil fertility benefits associated with animal manure and perennial forage suggest that aspects of the two organic systems be combined to maximize the productivity and sustainability of organic cropping systems.


2010 ◽  
Vol 90 (4) ◽  
pp. 403-420 ◽  
Author(s):  
D. McCartney ◽  
J. Fraser

The need to reduce agricultural input costs while increasing soil fertility has prompted researchers to look for alternative crop production systems that include N fixing crops. Annual legumes can be used in rotations as forages and green manure crops to increase the organic matter and N content of soils and provide soil cover to control erosion and weeds. Despite the benefits of annual legumes, high production costs and scarcity of seed has hindered their use.Key words: Medic, clover, vetch, pea, bean, lentil, forage yield, forage quality


Sign in / Sign up

Export Citation Format

Share Document