scholarly journals Application of the “4R” Nutrient Stewardship Concept to Horticultural Crops: Selecting the “Right” Nutrient Source

2011 ◽  
Vol 21 (6) ◽  
pp. 663-666 ◽  
Author(s):  
Mark Gaskell ◽  
Tim Hartz

Nutrient management practices must be tailored to the crop, environment, and production system if nutrient efficiency and environmental water quality protection are to be achieved. This requires consideration of fertilizer choice, placement, application rate, and timing. These factors have been characterized as the “4Rs” of nutrient stewardship—right material, right placement, right rate, and right timing. The factors affecting the choice of fertilizer material have been described previously for agronomic crops, and include plant nutritional requirements, soil conditions, fertilizer delivery issues, environmental risks, product price, and economic constraints. Although those factors are applicable to all crops, the unique features of intensive horticultural production systems affect their interactions. This article discusses fertilizer choice as it affects productivity, profitability, sustainability, and environmental impact of intensive horticultural crop production. Diverse fertilizer materials are available for specialized application to provide nitrogen, phosphorus, potassium, and other plant nutrients for different horticultural needs. These fertilizer sources can be formulated as dry or liquid blends, but increasingly higher solubility materials are used to target plant growth needs even in field operations. Composts can have useful applications—particularly for certified organic production—but their high cost, bulk, and relatively low efficiency limit their use. Profitability can be affected by fertilizer cost—typically a relative small percentage of overall costs in intensive production systems—and the improved efficiency of these specialized materials often improves profitability. There are also sustainability issues with the manufacture, transport, and efficient use of different fertilizer sources. Such factors as soil chemical reaction changes, effects on soil salinity, and loss of organic matter also can adversely affect sustainability, but systems are available to maintain soil quality while using more efficient fertilizer sources.

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1418
Author(s):  
Melissa L. Wilson ◽  
Emily E. Evans ◽  
Lee Klossner ◽  
Paulo H. Pagliari

Oat (Avena sativa L.) is an important crop for organic production systems in the upper Midwest, but limited information on optimal nutrient management and seeding rates is available. Oat varieties representing three maturity groups were evaluated during 2015 and 2016 in Lamberton, Minnesota on organically certified ground previously planted to alfalfa (Medicago sativa L.). Two oat seeding rates (110 and 145 kg ha−1), two nutrient sources (raw and composted beef manure), and four N application rates (0, 50, 100, and 150 kg ha−1) were studied. Plant population; number of tillers; grain yield; grain nutrient removal (primary and secondary macronutrients); and post-harvest soil nitrate, Bray P-1, and K in the top 0 to 15 cm layer were measured. Grain yield was 4.8, 4.0, and 3.8 kg ha−1 for late maturing Deon, early maturing Tack/Saber, and medium maturing Shelby, respectively. Yield was optimized at a nutrient application rate of 82.3 kg N ha−1 and decreased at higher rates. Grain N content was not related to yield, suggesting that the other nutrients in manure and compost may have been responsible for optimizing yield. High application rates resulted in increased residual soil test P and K levels, which could become problematic if not managed appropriately.


2013 ◽  
Vol 27 (4) ◽  
pp. 656-663 ◽  
Author(s):  
Kristin K. Rosenbaum ◽  
Kevin W. Bradley

A survey of soybean fields containing waterhemp infestations was conducted just prior to harvest in 2008 and 2009 to determine the frequency and distribution of glyphosate-resistant waterhemp in Missouri, and to determine if there are any in-field parameters that may serve as indicators of glyphosate resistance in this species in future crop production systems. Glyphosate resistance was confirmed in 99 out of 144, or 69%, of the total waterhemp populations sampled, which occurred in 41 counties of Missouri. Populations of glyphosate-resistant waterhemp were more likely to occur in fields with no other weed species present at the end of the season, continuous cropping of soybean, exclusive use of glyphosate for several consecutive seasons, and waterhemp plants showing obvious signs of surviving herbicide treatment compared to fields characterized with glyphosate-susceptible waterhemp. Therefore, it is suggested that these four site parameters, and certain combinations of these parameters, serve as predictors of glyphosate resistance in future waterhemp populations.


Soil Research ◽  
2017 ◽  
Vol 55 (8) ◽  
pp. 778
Author(s):  
G. S. A. Castro ◽  
C. A. C. Crusciol ◽  
C. A. Rosolem ◽  
J. C. Calonego ◽  
K. R. Brye

This work aimed to evaluate the effects of crop rotations and soil acidity amelioration on soil physical properties of an Oxisol (Rhodic Ferralsol or Red Ferrosol in the Australian Soil Classification) from October 2006 to September 2011 in Botucatu, SP, Brazil. Treatments consisted of four soybean (Glycine max)–maize (Zea mays)–rice (Oryza sativa) rotations that differed in their off-season crop, either a signal grass (Urochloa ruziziensis) forage crop, a second crop, a cover crop, or fallow. Two acid-neutralising materials, dolomitic lime (effective calcium carbonate equivalent (ECCE) = 90%) and calcium-magnesium silicate (ECCE = 80%), were surface applied to raise the soil’s base saturation to 70%. Selected soil physical characteristics were evaluated at three depths (0–0.1, 0.1–0.2, and 0.2–0.4 m). In the top 0.1 m, soil bulk density was lowest (P < 0.05) and macroporosity and aggregate stability index were greatest (P < 0.05) in the forage crop compared with all other production systems. Also, bulk density was lower (P < 0.05) and macroporosity was greater (P < 0.05) in the acid-neutralising-amended than the unamended control soil. In the 0.1–0.2-m interval, mean weight diameter and mean geometric diameter were greater (P < 0.05) in the forage crop compared with all other production systems. All soil properties evaluated in this study in the 0.2–0.4-m interval were unaffected by production system or soil amendment after five complete cropping cycles. Results of this study demonstrated that certain soil physical properties can be improved in a no-tillage soybean–maize–rice rotation using a forage crop in the off-season and with the addition of acid-neutralising soil amendments. Any soil and crop management practices that improve soil physical properties will likely contribute to sustaining long-term soil and crop productivity in areas with highly weathered, organic matter-depleted, acidic Oxisols.


Author(s):  
Bimesh Dahal

There are many management methods for nutrient which can be specifically applied in farming systems. Integrated nutrient management (INM) generally denotes the combined use of organic and chemical fertilizers for producing crops in a sustainable manner and to maintain soil fertility as well as to supply nutrient in appropriate amount which consider social, ecological and economic impacts. This paper shows the importance and need of INM in agriculture production. Also, the relation of INM and yield attributes are analyzed and evaluated including growth and physical attributes of cowpea. The status of nutrient uptake by plant is also described along with other physical and chemical properties of soil. Finally, this paper also describes about the biofertilizer and its relation, impact and effect on crop production which can be used as a improved technology with the combination of other nutrient management practices.


Author(s):  
Dhiman Mukherjee

In the emerging global economic order in which agricultural crop production is witnessing a rapid transition to agricultural commodity production, potato is appearing as an important crop, poised to sustain and diversify food production in this new millennium. Temperature and unpredictable drought are two most important factor affecting world food securities and the catalyst of the great famines of the past. Decreased precipitation could cause reduction of irrigation water availability and increase in evapo-transpiration, leading to severe crop water-stress conditions. Increasing crop productivity in unfavourable environments will require advanced technologies to complement traditional methods which are often unable to prevent yield losses due to environmental stresses. Various crop management practices such as improved nutrient application rate, mulching, raised beds and other improved technology help to raise the productivity. Conservation farming practices play important role to restore soil and enhancing soil health and play important role to combat climate change issue.


HortScience ◽  
2018 ◽  
Vol 53 (9) ◽  
pp. 1364-1371 ◽  
Author(s):  
John C. Majsztrik ◽  
Andrew G. Ristvey ◽  
David S. Ross ◽  
John D. Lea-Cox

Quantifying the range of fertilizer and irrigation application rates applied by the ornamental nursery and greenhouse industry is challenging as a result of the variety of species, production systems, and cultural management techniques that are used. To gain a better understanding of nutrient and water use by the ornamental industry in Maryland, 491 potential operations (including multiple addresses and contacts) in the state were mailed a packet of information asking for their voluntary participation. Of the 491 potential operations, it was determined that 348 operations were currently in operation. Of those 348 operations, 48 (14% of the operations in the state) participated in a site visit and an in-depth interview, and a detailed site analysis of the water and nutrient management practices was performed on a production management unit (MU) basis. The authors define an MU as a group of plants that is managed similarly, particularly in regard to nutrient and irrigation application. Greenhouse operations reported, on average, 198, 122, and 196 kg/ha/year of nitrogen (N), phosphorus (P, as P2O5), and potassium (K, as K2O) fertilizer used, respectively, for 27 operations, representing 188 MUs. Twenty-seven outdoor container nursery operations had a total of 162 MUs, with an average of 964, 390, and 556 kg/ha/year of N, P2O5, and K2O fertilizer used, respectively. Field nursery (soil-based) operations were represented by 17 operations, producing 96 MUs, with an average of 67, 20, and 25 kg/ha/year of N, P2O5, and K2O fertilizer used, respectively. Irrigation volume per application was greatest in container nursery operations, followed by greenhouse and field nursery operations. Data were also analyzed by creating quartiles, which represent the median of the lowest 25%, the middle 50%, and highest 75% of values. It is likely that the greatest quartile application rates reported by growers could be substantially reduced with little to no effect on plant production time or quality. These data also provide baseline information to determine changes in fertilization practices over time. They were also used as inputs for water and nutrient management models developed as part of this study. These data may also be useful for informing nutrient application rates used in the Chesapeake Bay nutrient modeling process.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1349
Author(s):  
John Havlin ◽  
Ron Heiniger

Increasing crop productivity per unit of land area to meet future food and fiber demand increases both soil nutrient removal and the importance of replenishing soil fertility through efficient nutrient management practices. Significant progress in enhancing nutrient-use efficiency in production agriculture requires improved estimates of plant-available nutrients in the root zone, enhanced crop response to applied nutrients, and reduced offsite nutrient transport. This special issue, Soil Fertility Management for Better Crop Production, presents 15 manuscripts that advance our knowledge of interrelated soil, plant, and management factors important to increasing the nutrient availability and crop recovery of applied nutrients.


Weed management is a new term for the age-old practice of employing all available means, in a planned way, to keep weed populations under control. It seeks to distinguish the systematic approach to weed control, based on scientific knowledge and rational strategies, from the pragmatic destruction of weeds. The remarkable efficiency of herbicides has in recent years emphasized the latter and allowed revolutionary methods of crop production to be practised. These have, however, led to serious new weed problems which in turn require more intensive herbicide use. The need for a weed management approach is increasingly recognized. New opportunities for this are provided by the availability of numerous herbicides and plant growth regulators and a growing understanding of the biology, ecology and population dynamics of weeds in relation to crop production systems. Examples discussed include: systematic control of grass weeds in intensive cereals in Britain, weed control in rice and in soybeans, the control of aquatic weeds by biological and chemical methods and an experimental zero-tillage cropping system for the humid tropics based on herbicides, growth regulators and ground-cover leguminous crops. In such management systems, interference of weed behaviour by exogenous growth regulators is likely to be of increasing significance. Constraints on the adoption of weed management practices include lack of support for weed science as a discipline, limited appeal to the agrochemical industry and inadequate extension services in many countries.


2020 ◽  
Vol 5 (2) ◽  
pp. 024-030
Author(s):  
Olowookere ◽  
B. T ◽  
Salihu D. A. ◽  
Oyerinde G.T

Efficient utilization of Nutrient will help boost crop yield in the face of rapidly increasing population and food insecurity. This study evaluates the effects of varying nitrogen and zinc rates on growth and yield of maize in Abaji, Federal Capital Territory of Nigeria. Four Nitrogen levels (0 kg N/ha, 40 kg N/ha, 80 kg N/ha and 120 kg N/ha) were evaluate with two Zinc levels (0 kg Zn/ha and 2 kg Zn/ha). The experimental factors were combined with a Factorial in Randomized Complete Block Design (RCBD). Nitrogen was applied as Urea while Zn was applied with Zinc Sulphate (ZnSO4). Phosphorous was applied with Single Super Phosphate (SSP) at the rate of 60 kg P2O5/ha and potassium was supplied with Muriate of Potash (MOP) at 60 kg K2O/ha. Result shows that Nitrogen application rate of 80 kg N/ha gave the optimum yield in the study area and was recommended for adoption along with other sustainable soil nutrient management practices.


HortScience ◽  
2001 ◽  
Vol 36 (5) ◽  
pp. 893-896 ◽  
Author(s):  
Logan S. Logendra ◽  
Thomas J. Gianfagna ◽  
David R. Specca ◽  
Harry W. Janes

Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for singlecluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.


Sign in / Sign up

Export Citation Format

Share Document