scholarly journals Biochemical Changes during Fruit Development of Four Strawberry Cultivars

2001 ◽  
Vol 126 (4) ◽  
pp. 394-403 ◽  
Author(s):  
Annick Moing ◽  
Christel Renaud ◽  
Monique Gaudillère ◽  
Philippe Raymond ◽  
Philippe Roudeillac ◽  
...  

As genetic factors affect strawberry (Fragaria ×ananassa Duch.) fruit development and quality, changes in metabolite concentrations were studied during fruit development of four strawberry cultivars grown in the field: three commercial cultivars (Capitola, Elsanta and Dover) and a genotype from Centre Interrégional de Recherche et d'Expérimentation de la Fraise, France (`CF1116'). Major and minor metabolites changed with development. The two strawberry cultivars with the highest starch content at early stages, `Capitola' and `Elsanta', also had the highest fruit weight at harvest. There was no correlation between strawberry weight and osmolarity. At maturity, significant differences were observed among cultivars for most of the metabolites studied. `Capitola' and `Elsanta' responded similarly for most measured variables. `CF1116' was characterized by high juice osmolarity and high sucrose, inositol, glutamine, arginine and alanine concentrations, and low citrate and malate concentrations. `Dover' was characterized by a high galactose concentration and low asparagine and alanine concentrations. Organic acid differences among cultivars appeared early during development, while differences in soluble sugars appeared during maturation. The developmental pattern of each amino acid varied among cultivars. Timing of the biochemical differences observed among cultivars provides some information on their metabolic origin.

1990 ◽  
Vol 115 (2) ◽  
pp. 202-207 ◽  
Author(s):  
Martin P.N. Gent

Strawberry (Fragaria × ananassa Duchesn.) cultivars differ in response to removal date of row covers when they are used for winter protection and to accelerate fruit development and production. In 1986-87 and 1987-88, eight cultivars were overwintered under either spun-bonded polypropylene row cover or under straw. The straw was removed from control plots in late March. Row covers were removed on four dates beginning in late March and separated by about 2-week intervals. The time of flowering, fruit set, and fruit ripening was advanced in direct relation to the time that row covers remained over plants in spring. The differences in time of fruit ripening were less than those of time of flowering, however. The mid-harvest date was advanced as much as 8 days for `Earlidawn' and `Midway', but only 4 days for `Redchief' and `Scott'. Weight per fruit and percentage of marketable fruit were reduced when plants remained under row cover until mid-May. This effect was most noticeable for `Earlidawn', `Guardian', and `Redchief'. The fruit quality of `Midway' and `Jerseybelle' was not significantly affected by date of row cover removal. These cultivar-specific responses were probably not related to the stage of fruit development when row covers were removed, as both early and late-flowering cultivars were sensitive (and insensitive) to the date of row cover removal.


1998 ◽  
Vol 123 (4) ◽  
pp. 560-562 ◽  
Author(s):  
Avinoam Nerd ◽  
Yosef Mizrahi

Changes occurring during fruit ripening and duration of fruit development were studied in Selenicereus megalanthus (Scum. ex Vaupel) Moran (yellow pitaya), a climbing cactus grown in protected structures at three sites in the Israeli Negev desert. During ripening, peel color turned from green to yellow, fruit dimensions slightly changed, and pulp content markedly increased. Total soluble solids and soluble sugars in the pulp increased, while starch content decreased. Acidity decreased at the last stage of ripening. Fruit in which most of the peel area had turned yellow (stage 4) were given the highest taste grade by a panel of tasters. Measurements of ethylene and CO2 evolution indicated that fruit was nonclimacteric. The mean number of days from anthesis to fruit of stage 4 was negatively correlated with the mean of the maximum and the minimum temperatures during the growth period. Daily accumulation of heat units (HUs) was calculated as the difference between daily mean temperature and a base temperature of 7 °C. Sum of HUs for the period from anthesis to ripening was 1558±12 HUs.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 81
Author(s):  
Yunduan Li ◽  
Yuanyuan Zhang ◽  
Xincheng Liu ◽  
Yuwei Xiao ◽  
Zuying Zhang ◽  
...  

Volatile compounds principally contribute to flavor of strawberry (Fragaria × ananassa) fruit. Besides to genetics, cultivation conditions play an important role in fruit volatile formation. Compared to soil culture as control, effects of substrate culture on volatile compounds of two strawberry cultivars (‘Amaou’ and ‘Yuexin’) were investigated. GC-MS analysis revealed significant difference in volatile contents of ‘Amaou’ strawberry caused by substrate culture. No significant effect was observed for cultivar ‘Yuexin’. For ‘Amaou’ strawberry from soil culture produced higher volatile contents compared with substrate culture. This difference is contributed by high contents of esters, lactones, ketones, aldehydes, terpenes, hydrocarbons, acids, furans and phenols in ‘Amaou’ strawberry fruit from soil culture. Furanones, beta-linalool, trans-Nerolidol and esters are major contributor to strawberry aroma, whose contents are higher in soil culture planted fruit when compared to substrate culture. Moreover, strawberry fruit from soil culture had higher transcripts related to volatile biosynthesis were observed, including FaQR, FaOMT, FaNES1, FaSAAT and FaAAT2.


2008 ◽  
Vol 32 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Renata Braga Souza Lima ◽  
José Francisco de Carvalho Gonçalves ◽  
Silvana Cristina Pando ◽  
Andréia Varmes Fernandes ◽  
André Luis Wendt dos Santos

This study aimed to characterize protein, oil, starch and soluble sugar mobilization as well as the activity of alpha-amylase during rosewood seed germination. Germination test was carried out at 25°C and the following parameters were analyzed: percentage of germination, initial, average, and final germination time. Seed reserve quantification was monitored in quiescent seeds and during different stages of radicle growth. Starch mobilization was studied in function of a-amylase activity. Germination reached 87.5% at the initial, average, and final time of 16, 21 and 30 days, respectively. Oil mobilization showed a negative linear behavior, decreasing 40% between the first and the last stage analyzed, whereas protein levels increased 34.7% during the initial period of germination. Starch content (46.4%) was the highest among those of the metabolites analyzed and starch mobilization occurred inversely to the observed for soluble sugars; alpha-amylase activity increased until the 15th day, a period before radicle emission and corresponding to the highest starch mobilization. The high percentage of rosewood seed germination may be related to the controlled condition used in the germination chamber as well as to high seed reserve mobilization, in special oil and starch.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4976 ◽  
Author(s):  
Panpan Hu ◽  
Gang Li ◽  
Xia Zhao ◽  
Fengli Zhao ◽  
Liangjie Li ◽  
...  

Strawberry (Fragaria × ananassa) is an ideal plant for fruit development and ripening research due to the rapid substantial changes in fruit color, aroma, taste, and softening. To gain deeper insights into the genes that play a central regulatory role in strawberry fruit development and ripening characteristics, transcriptome profiling was performed for the large green fruit, white fruit, turning fruit, and red fruit stages of strawberry. A total of 6,608 differentially expressed genes (DEGs) with 2,643 up-regulated and 3,965 down-regulated genes were identified in the fruit development and ripening process. The DEGs related to fruit flavonoid biosynthesis, starch and sucrose biosynthesis, the citrate cycle, and cell-wall modification enzymes played important roles in the fruit development and ripening process. Particularly, some candidate genes related to the ubiquitin mediated proteolysis pathway and MADS-box were confirmed to be involved in fruit development and ripening according to their possible regulatory functions. A total of fiveubiquitin-conjugating enzymesand 10MADS-box transcription factorswere differentially expressed between the four fruit ripening stages. The expression levels of DEGs relating to color, aroma, taste, and softening of fruit were confirmed by quantitative real-time polymerase chain reaction. Our study provides important insights into the complicated regulatory mechanism underlying the fruit ripening characteristics inFragaria × ananassa.


1995 ◽  
Vol 120 (2) ◽  
pp. 274-277 ◽  
Author(s):  
Kirk D. Larson ◽  
Douglas V. Shaw

Performance characteristics for 12 strawberry genotypes (Fragaria ×ananassa Duch.) from the Univ. of California, Davis, strawberry improvement program were evaluated in annual hill culture, with and without preplant soil fumigation using a mixture of 67 methyl bromide:33 chloropicrin (trichloronitromethane) (wt/wt, 392 kg·ha-1). Plants were established at two locations; one trial followed several cycles of strawberry plantation, whereas the other had not been cropped with strawberries for 20 years. Plant mortality was <3% and did not differ between soil treatments; thus, the main effects of fumigation treatment in these experiments were due to sublethal effects of soil organisms. Plants grown in nonfumigated soil produced 51% and 57% of the fruit yield of plants grown in fumigated soil for soils with and without a recent history of strawberry cultivation, respectively. Nonfumigated treatments also had reduced fruit weight and uniformly lower vegetative vigor during the early phases of plantation establishment. Significant genotype x fumigation interactions were not detected for any of the growth or performance traits at either location. Further, the proportion of variance attributable to interactions was at most 25% of that due to variation among genotypes, even for this highly selected population. Genotypic correlations for traits evaluated in different fumigation treatments ranged from 0.80 to 1.00; thus, selection in either soil environment is expected to affect largely the same sets of genes. These results demonstrate that strawberry productivity is substantially increased by fumigation, even in the absence of lethal pathogens or a discernible replant problem. More importantly, there appears to be little opportunity for developing cultivars specifically adapted to sublethal effects of nonfumigated soils.


2013 ◽  
Vol 93 (6) ◽  
pp. 997-999 ◽  
Author(s):  
Grant Sinclair ◽  
Christiane Charest ◽  
Yolande Dalpé ◽  
Shahrokh Khanizadeh

Sinclair, G., Charest, C., Dalpé, Y. and Khanizadeh, S. 2013. Influence of arbuscular mycorrhizal fungi and a root endophyte on the biomass and root morphology of selected strawberry cultivars under salt conditions. Can. J. Plant Sci. 93: 997–999. The influence of four arbuscular mycorrhizal fungi (AMF) (Glomus arenarium, G. caledonium, G. irregulare, and G. mosseae) and a root endophyte species (Piriformospora indica – Sebacinales) was investigated on four “day-neutral” strawberry (Fragaria×ananassa Duch.) cultivars (Albion, Charlotte, Mara des Bois, and Seascape) for their tolerance to salt stress. Fungal symbiosis tended to benefit strawberry plants in their tolerance to salinity, confirming the potential use of mycorrhizal biotechnology in horticulture in arid areas.


2012 ◽  
pp. 367-374
Author(s):  
C. Copetti ◽  
G.S. Borges ◽  
J.L. Barcelos-Oliveira ◽  
L.V. Gonzaga ◽  
R. Fett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document