Best Management Practices for Nutrient and Sediment Retention in Urban Stormwater Runoff

2007 ◽  
Vol 36 (2) ◽  
pp. 386-395 ◽  
Author(s):  
Dianna M. Hogan ◽  
Mark R. Walbridge
2019 ◽  
Vol 11 (19) ◽  
pp. 5415 ◽  
Author(s):  
Manal Osman ◽  
Khamaruzaman Wan Yusof ◽  
Husna Takaijudin ◽  
Hui Weng Goh ◽  
Marlinda Abdul Malek ◽  
...  

One of the best management practices (BMPs) for stormwater quality and quantity control is a bioretention system. The removal efficiency of different pollutants under this system is generally satisfactory, except for nitrogen which is deficient in certain bioretention systems. Nitrogen has a complex biogeochemical cycle, and thus the removal processes of nitrogen are typically slower than other pollutants. This study summarizes recent studies that have focused on nitrogen removal for urban stormwater runoff and discusses the latest advances in bioretention systems. The performance, influencing factors, and design enhancements are comprehensively reviewed in this paper. The review of current literature reveals that a bioretention system shows great promise due to its ability to remove nitrogen from stormwater runoff. Combining nitrification and denitrification zones with the addition of a carbon source and selecting different plant species promote nitrogen removal. Nevertheless, more studies on nitrogen transformations in a bioretention system and the relationships between different design factors need to be undertaken.


2013 ◽  
Vol 23 (6) ◽  
pp. 1384-1395 ◽  
Author(s):  
Clayton J. Williams ◽  
Paul C. Frost ◽  
Marguerite A. Xenopoulos

1999 ◽  
Vol 39 (12) ◽  
pp. 117-121 ◽  
Author(s):  
M. J. Braune ◽  
A. Wood

South Africa currently has one of the highest rates of urbanisation in the world causing a significant increase in surface water runoff. This, in turn, causes increased flooding and a significant decrease in water quality due primarily to the accumulation of pollutants. The need exists to manage urban stormwater runoff on an integrated catchment basis, thereby reducing the negative impact of urbanisation on the environment and quality of life. In this paper, details on how existing problem areas can be identified and ranked, the use of Best Management Practices (BMPs) to reduce the impacts of urbanisation on the environment and the effectiveness of BMP's are discussed and illustrated, based on expertise gained from studies in South Africa as well as visits to the USA and Australia.


1998 ◽  
Vol 38 (10) ◽  
pp. 91-97 ◽  
Author(s):  
H. Sieker ◽  
M. Klein

Because of multiple constraints, e.g. existing drainage systems, little available space and higher costs, Best Management Practices (BMP) for stormwater-runoff in existing urban areas is more difficult to apply than for new urban developments. For a large urban catchment (about 22 km2) with a separate drainage system in Berlin, Germany a combination of decentral (non-structural) and semi-central stormwater-management measures proved to be the best solution. It offers a high effectiveness concerning stormwater treatment at relatively low costs. Modern planning tools such as Geographic Information Systems (GIS) were used to investigate the possibilities of implementing decentral measures in larger areas. Correlations between field surveys and data from the ‘Environmental Information System’ of Berlin shows that even in highly urbanised areas a disconnection of 30% of the impervious area can easily be achieved. The resulting reduction of the discharge makes it possible to convert existing retention tanks to soil filter tanks. The purification efficiency of this combined measures is higher than of a central stormwater settling tank which has been simulated with a pollution load model.


2012 ◽  
Vol 65 (6) ◽  
pp. 1076-1080 ◽  
Author(s):  
Xubin Pan ◽  
Kim D. Jones

Bacteria are one of the major causes of surface water impairments in the USA. Over the past several years, best management practices, including detention basins, manufactured devices, grass swales, filters and bioretention cells have been used to remove bacteria and other pollutants from stormwater runoff. However, there are data gaps in the comprehensive studies of bacteria concentrations in stormwater runoff. In this paper, the event mean concentration (EMC) of fecal indicator bacteria (Enterococcus, Escherichia coli, fecal Streptococcus group bacteria, and fecal coliform) across the USA was retrieved from the international stormwater best management practices database to analyze the seasonal variations of inflow and outflow event mean concentrations and removal efficiencies. The Kruskal–Wallis test was employed to determine the seasonal variations of bacteria indicator concentrations and removals, and the two-sample Kolmogorov–Smirnov test was used for comparing different seasonal outcomes. The results indicate that all the inflow EMC of FIB in stormwater runoff is above the water quality criteria. The seasonal differences of fecal Streptococcus group bacteria and fecal coliform are significant. Summer has the potential to increase the bacteria EMC and illustrate the seasonal differences.


2019 ◽  
Vol 27 (1) ◽  
pp. 17-42 ◽  
Author(s):  
James Hager ◽  
Guangji Hu ◽  
Kasun Hewage ◽  
Rehan Sadiq

Low-impact development (LID), a land planning and engineering design approach for managing urban stormwater runoff, has been widely adopted across the globe. LID best management practices (BMPs) are man-made features that rely on natural processes to manage stormwater water quantity and quality. In this article, recent literature (published after the year 2008) related to nine BMPs was reviewed to highlight the ranges in treatment efficiencies for 21 of the most frequently investigated runoff parameters. The primary function, pros and cons, and factors affecting performance of each BMP were discussed. A frequency analysis of the reviewed parameters showed that total suspended solids, total phosphorous, total nitrogen, runoff reduction, and zinc concentrations were the most frequently investigated stormwater runoff parameters. Five recurring themes were observed with regards to knowledge gaps and conflicting objectives for research related to LID BMPs that include: (i) lack of consensus on which parameters to measure for effective LID adoption, (ii) BMP performance is highly variable, (iii) many BMPs are known exporters of nutrient pollutants, (iv) lack of cold weather performance-specific studies for individual BMPs, and (v) lack of human pathogen-related stormwater quality studies for individual BMPs. Suggestions for future research are discussed to address these knowledge gaps.


Sign in / Sign up

Export Citation Format

Share Document