Some Growth Responses of Tomatoes to Soil Compaction

1959 ◽  
Vol 23 (3) ◽  
pp. 188-191 ◽  
Author(s):  
W. J. Flocker ◽  
J. A. Vomocil ◽  
F. D. Howard
2005 ◽  
Vol 35 (8) ◽  
pp. 2045-2055 ◽  
Author(s):  
Richard Kabzems ◽  
Sybille Haeussler

Retaining organic matter and preventing soil compaction are important factors affecting the sustainability of managed forests. To assess how these factors affect short-term ecosystem dynamics, pre-treatment and 1 year and 5 year post-treatment soil properties and post-treatment tree growth responses were examined in a boreal trembling aspen (Populus tremuloides Michx.) dominated ecosystem in northeastern British Columbia, Canada. The experiment used a completely randomized design with three levels of organic matter removal (tree stems only; stems and slash; stems, slash, and forest floor) and three levels of soil compaction (none, intermediate (2-cm impression), heavy (5-cm impression)). Removal of the forest floor initially stimulated aspen regeneration and significantly reduced height growth of aspen and white spruce (Picea glauca (Moench) Voss). The compaction treatments had no effect on aspen regeneration density. At year 5, heights of both aspen and white spruce were negatively correlated (r2 > 0.31, p < 0.0001) with upper mineral soil bulk density and were lowest on forest floor removal treatments, where minimal recovery from compaction was observed. There was some evidence for recovery of soil properties to preharvest conditions where expansion of herbaceous vegetation increased soil organic matter.


2012 ◽  
Vol 39 (11) ◽  
pp. 891 ◽  
Author(s):  
Kerstin A. Nagel ◽  
Alexander Putz ◽  
Frank Gilmer ◽  
Kathrin Heinz ◽  
Andreas Fischbach ◽  
...  

Root systems play an essential role in ensuring plant productivity. Experiments conducted in controlled environments and simulation models suggest that root geometry and responses of root architecture to environmental factors should be studied as a priority. However, compared with aboveground plant organs, roots are not easily accessible by non-invasive analyses and field research is still based almost completely on manual, destructive methods. Contributing to reducing the gap between laboratory and field experiments, we present a novel phenotyping system (GROWSCREEN-Rhizo), which is capable of automatically imaging roots and shoots of plants grown in soil-filled rhizotrons (up to a volume of ~18 L) with a throughput of 60 rhizotrons per hour. Analysis of plants grown in this setup is restricted to a certain plant size (up to a shoot height of 80 cm and root-system depth of 90 cm). We performed validation experiments using six different species and for barley and maize, we studied the effect of moderate soil compaction, which is a relevant factor in the field. First, we found that the portion of root systems that is visible through the rhizotrons’ transparent plate is representative of the total root system. The percentage of visible roots decreases with increasing average root diameter of the plant species studied and depends, to some extent, on environmental conditions. Second, we could measure relatively minor changes in root-system architecture induced by a moderate increase in soil compaction. Taken together, these findings demonstrate the good potential of this methodology to characterise root geometry and temporal growth responses with relatively high spatial accuracy and resolution for both monocotyledonous and dicotyledonous species. Our prototype will allow the design of high-throughput screening methodologies simulating environmental scenarios that are relevant in the field and will support breeding efforts towards improved resource use efficiency and stability of crop yields.


2001 ◽  
Vol 52 (364) ◽  
pp. 2127-2133 ◽  
Author(s):  
Kelvin D. Montagu ◽  
Jann P. Conroy ◽  
Brian J. Atwell

EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Claudia Paez ◽  
Jason A. Smith

Biscogniauxia canker or dieback (formerly called Hypoxylon canker or dieback) is a common contributor to poor health and decay in a wide range of tree species (Balbalian & Henn 2014). This disease is caused by several species of fungi in the genus Biscogniauxia (formerly Hypoxylon). B. atropunctata or B. mediterranea are usually the species found on Quercus spp. and other hosts in Florida, affecting trees growing in many different habitats, such as forests, parks, green spaces and urban areas (McBride & Appel, 2009).  Typically, species of Biscogniauxia are opportunistic pathogens that do not affect healthy and vigorous trees; some species are more virulent than others. However, once they infect trees under stress (water stress, root disease, soil compaction, construction damage etc.) they can quickly colonize the host. Once a tree is infected and fruiting structures of the fungus are evident, the tree is not likely to survive especially if the infection is in the tree's trunk (Anderson et al., 1995).


2018 ◽  
Vol 24 (2) ◽  
Author(s):  
J. D. BARSHILE

Present investigation was undertaken to standardize technique for in vitro micro-propagation of chickpea( Cicer arietinum ) cultivar Vishwas (Phule G 12). Micropropagation method for chickpea was established and this method enabled much more efficient propagation of plants. The present work was aimed at evolving a protocol for rapid multiplication of chickpea using micropropagation technique. Explants from shoot tip and node segment were cultured on MS medium supplemented with different concentrations of BAP and Kinetin (1.0 to 2.5 mg/l) and their growth responses like shooting were elucidated. The maximum multiple response was observed with 2 mg/l concentration of BAP from both types of explant. The highest number of shoots (12.5 ± 0.3) was achieved on MS medium with 2 mg/l BAP using node segments. The medium supplemented with 2 mg/l of BAP was found better than all other concentrations. Individual shoots were transferred to IBA and IAA (1.0-1.5 mg/l) for root induction. MS medium supplemented with 2 mg/l of IBA proved better for rooting. Rooted plantlets were successfully hardened in greenhouse and established in the pot.


Author(s):  
P.W. Shannon

Increasing material, processing, and distribution costs have raised superphosphate prices to a point where many farms cannot support the costs of meeting maintenance phosphate requires men& Alternatives to superphosphate, particularly those that have lower processing costs and contain more P, may offer a solution to the problem provided they are agronomically as effective. Phosphate rock may indeed be such an alternative. Preliminary results from a series of five trials in Northland show that on soils of moderate P fertility, with low phosphate retention (PR) and high pH (5.9.6.0), initial pasture growth responses to rock phosphates are smaller than those from single or triple superphosphate. On one soil of higher PR and lower pH, the differences in yield between the rock-phosphates and the super. phosphates were smaller. Of the rock phosphates tested, Sechura and North Carolina (unground and ungranulated) tended to be more effective than ground and granulated Chatham Rise phosphorite. The effect on production of applying fertilisers once every three years, as opposed to annual applications is being investigated using triple superphosphate and Sechura phosphate rock. After two years, production levels appear largely unaffected by differences in application frequency. A comparison of locally-produced superphosphate with a reference standard showed that both performed similarly, indicating that the local product was of satisfactory quality.


Author(s):  
Salavat Mudarisov ◽  
Ildar Farkhutdinov ◽  
Airat Mukhametdinov ◽  
Raushan Aminov ◽  
Rustam Bagautdinov ◽  
...  

1952 ◽  
Vol 11 (1) ◽  
pp. 97-102 ◽  
Author(s):  
B. E. Sheffy ◽  
R. H. Grummer ◽  
P. H. Phillips ◽  
G. Bohstedt
Keyword(s):  

1996 ◽  
Author(s):  
Michael P. Amaranthus ◽  
Debbie Page-Dumroese ◽  
Al Harvey ◽  
Efren Cazares ◽  
Larry F. Bednar

Sign in / Sign up

Export Citation Format

Share Document