Talent Management with Big Data Analytics: A Review

2018 ◽  
Author(s):  
Indira Sangapu
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Arnold Saputra ◽  
Gunawan Wang ◽  
Justin Zuopeng Zhang ◽  
Abhishek Behl

PurposeThe era of work 4.0 demands organizations to expedite their digital transformation to sustain their competitive advantage in the market. This paper aims to help the human resource (HR) department digitize and automate their analytical processes based on a big-data-analytics framework.Design/methodology/approachThe methodology applied in this paper is based on a case study and experimental analysis. The research was conducted in a specific industry and focused on solving talent analysis problems.FindingsThis research conducts digital talent analysis using data mining tools with big data. The talent analysis based on the proposed framework for developing and transforming the HR department is readily implementable. The results obtained from this talent analysis using the big-data-analytics framework offer many opportunities in growing and advancing a company's talents that are not yet realized.Practical implicationsBig data allows HR to perform analysis and predictions, making more intelligent and accurate decisions. The application of big data analytics in an HR department has a significant impact on talent management.Originality/valueThis research contributes to the literature by proposing a formal big-data-analytics framework for HR and demonstrating its applicability with real-world case analysis. The findings help organizations develop a talent analytics function to solve future leaders' business challenges.


2019 ◽  
Vol 54 (5) ◽  
pp. 20
Author(s):  
Dheeraj Kumar Pradhan

2020 ◽  
Vol 49 (5) ◽  
pp. 11-17
Author(s):  
Thomas Wrona ◽  
Pauline Reinecke

Big Data & Analytics (BDA) ist zu einer kaum hinterfragten Institution für Effizienz und Wettbewerbsvorteil von Unternehmen geworden. Zu viele prominente Beispiele, wie der Erfolg von Google oder Amazon, scheinen die Bedeutung zu bestätigen, die Daten und Algorithmen zur Erlangung von langfristigen Wettbewerbsvorteilen zukommt. Sowohl die Praxis als auch die Wissenschaft scheinen geradezu euphorisch auf den „Datenzug“ aufzuspringen. Wenn Risiken thematisiert werden, dann handelt es sich meist um ethische Fragen. Dabei wird häufig übersehen, dass die diskutierten Vorteile sich primär aus einer operativen Effizienzperspektive ergeben. Strategische Wirkungen werden allenfalls in Bezug auf Geschäftsmodellinnovationen diskutiert, deren tatsächlicher Innovationsgrad noch zu beurteilen ist. Im Folgenden soll gezeigt werden, dass durch BDA zwar Wettbewerbsvorteile erzeugt werden können, dass aber hiermit auch große strategische Risiken verbunden sind, die derzeit kaum beachtet werden.


2019 ◽  
Vol 7 (2) ◽  
pp. 273-277
Author(s):  
Ajay Kumar Bharti ◽  
Neha Verma ◽  
Deepak Kumar Verma

2017 ◽  
Vol 49 (004) ◽  
pp. 825--830
Author(s):  
A. AHMED ◽  
R.U. AMIN ◽  
M. R. ANJUM ◽  
I. ULLAH ◽  
I. S. BAJWA

2019 ◽  
Author(s):  
Meghana Bastwadkar ◽  
Carolyn McGregor ◽  
S Balaji

BACKGROUND This paper presents a systematic literature review of existing remote health monitoring systems with special reference to neonatal intensive care (NICU). Articles on NICU clinical decision support systems (CDSSs) which used cloud computing and big data analytics were surveyed. OBJECTIVE The aim of this study is to review technologies used to provide NICU CDSS. The literature review highlights the gaps within frameworks providing HAaaS paradigm for big data analytics METHODS Literature searches were performed in Google Scholar, IEEE Digital Library, JMIR Medical Informatics, JMIR Human Factors and JMIR mHealth and only English articles published on and after 2015 were included. The overall search strategy was to retrieve articles that included terms that were related to “health analytics” and “as a service” or “internet of things” / ”IoT” and “neonatal intensive care unit” / ”NICU”. Title and abstracts were reviewed to assess relevance. RESULTS In total, 17 full papers met all criteria and were selected for full review. Results showed that in most cases bedside medical devices like pulse oximeters have been used as the sensor device. Results revealed a great diversity in data acquisition techniques used however in most cases the same physiological data (heart rate, respiratory rate, blood pressure, blood oxygen saturation) was acquired. Results obtained have shown that in most cases data analytics involved data mining classification techniques, fuzzy logic-NICU decision support systems (DSS) etc where as big data analytics involving Artemis cloud data analysis have used CRISP-TDM and STDM temporal data mining technique to support clinical research studies. In most scenarios both real-time and retrospective analytics have been performed. Results reveal that most of the research study has been performed within small and medium sized urban hospitals so there is wide scope for research within rural and remote hospitals with NICU set ups. Results have shown creating a HAaaS approach where data acquisition and data analytics are not tightly coupled remains an open research area. Reviewed articles have described architecture and base technologies for neonatal health monitoring with an IoT approach. CONCLUSIONS The current work supports implementation of the expanded Artemis cloud as a commercial offering to healthcare facilities in Canada and worldwide to provide cloud computing services to critical care. However, no work till date has been completed for low resource setting environment within healthcare facilities in India which results in scope for research. It is observed that all the big data analytics frameworks which have been reviewed in this study have tight coupling of components within the framework, so there is a need for a framework with functional decoupling of components.


Sign in / Sign up

Export Citation Format

Share Document