ZENITH: A Flow Cytometry Based Method for Functional Profiling Energy Metabolism with Single Cell Resolution

2020 ◽  
Author(s):  
Rafael Arguello ◽  
Alexis J. Combes ◽  
Remy Char ◽  
Evens Bousiquot ◽  
Julien P. Gigan ◽  
...  
2020 ◽  
Vol 32 (6) ◽  
pp. 1063-1075.e7 ◽  
Author(s):  
Rafael J. Argüello ◽  
Alexis J. Combes ◽  
Remy Char ◽  
Julien-Paul Gigan ◽  
Ania I. Baaziz ◽  
...  

2020 ◽  
Author(s):  
Rafael J. Argüello ◽  
Alexis J. Combes ◽  
Remy Char ◽  
Evens Bousiquot ◽  
Julien-Paul Gigan ◽  
...  

AbstractEnergetic metabolism reprogramming is critical for cancer and immune responses. Current methods to functionally profile the global metabolic capacities and dependencies of cells are performed in bulk. We designed a simple method for complex metabolic profiling called SCENITH, for Single Cell ENergetIc metabolism by profilIng Translation inHibition. SCENITH allows for the study of metabolic responses in multiple cell types in parallel by flow cytometry. SCENITH is designed to perform metabolic studies ex vivo, particularly for rare cells in whole blood samples, avoiding metabolic biases introduced by culture media. We analyzed myeloid cells in solid tumors from patients and identified variable metabolic profiles, in ways that are not linked to their lineage nor their activation phenotype. SCENITH ability to reveal global metabolic functions and determine complex and linked immune-phenotypes in rare cell subpopulations will contribute to the information needed for evaluating therapeutic responses or patient stratification.


2021 ◽  
Vol 25 (4) ◽  
Author(s):  
Hongyu Yang ◽  
Yuanchen Wei ◽  
Beiyuan Fan ◽  
Lixing Liu ◽  
Ting Zhang ◽  
...  

2018 ◽  
Vol 20 (suppl_6) ◽  
pp. vi137-vi137
Author(s):  
Amber Giles ◽  
Leonard Nettey ◽  
Thomas Liechti ◽  
Margaret Beddall ◽  
Elizabeth Vera ◽  
...  

2019 ◽  
Author(s):  
Evan Greene ◽  
Greg Finak ◽  
Leonard A. D’Amico ◽  
Nina Bhardwaj ◽  
Candice D. Church ◽  
...  

AbstractHigh-dimensional single-cell cytometry is routinely used to characterize patient responses to cancer immunotherapy and other treatments. This has produced a wealth of datasets ripe for exploration but whose biological and technical heterogeneity make them difficult to analyze with current tools. We introduce a new interpretable machine learning method for single-cell mass and flow cytometry studies, FAUST, that robustly performs unbiased cell population discovery and annotation. FAUST processes data on a per-sample basis and returns biologically interpretable cell phenotypes that can be compared across studies, making it well-suited for the analysis and integration of complex datasets. We demonstrate how FAUST can be used for candidate biomarker discovery and validation by applying it to a flow cytometry dataset from a Merkel cell carcinoma anti-PD-1 trial and discover new CD4+ and CD8+ effector-memory T cell correlates of outcome co-expressing PD-1, HLA-DR, and CD28. We then use FAUST to validate these correlates in an independent CyTOF dataset from a published metastatic melanoma trial. Importantly, existing state-of-the-art computational discovery approaches as well as prior manual analysis did not detect these or any other statistically significant T cell sub-populations associated with anti-PD-1 treatment in either data set. We further validate our methodology by using FAUST to replicate the discovery of a previously reported myeloid correlate in a different published melanoma trial, and validate the correlate by identifying it de novo in two additional independent trials. FAUST’s phenotypic annotations can be used to perform cross-study data integration in the presence of heterogeneous data and diverse immunophenotyping staining panels, enabling hypothesis-driven inference about cell sub-population abundance through a multivariate modeling framework we call Phenotypic and Functional Differential Abundance (PFDA). We demonstrate this approach on data from myeloid and T cell panels across multiple trials. Together, these results establish FAUST as a powerful and versatile new approach for unbiased discovery in single-cell cytometry.


2020 ◽  
Author(s):  
Etienne Becht ◽  
Daniel Tolstrup ◽  
Charles-Antoine Dutertre ◽  
Florent Ginhoux ◽  
Evan W. Newell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document