Cryptocurrency Trading-Pair Forecasting, Using Machine Learning and Deep Learning Technique

2020 ◽  
Author(s):  
Ernest Osifo ◽  
Ritabrata Bhattacharyya

Scientific Knowledge and Electronic devices are growing day by day. In this aspect, many expert systems are involved in the healthcare industry using machine learning algorithms. Deep neural networks beat the machine learning techniques and often take raw data i.e., unrefined data to calculate the target output. Deep learning or feature learning is used to focus on features which is very important and gives a complete understanding of the model generated. Existing methodology used data mining technique like rule based classification algorithm and machine learning algorithm like hybrid logistic regression algorithm to preprocess data and extract meaningful insights of data. This is, however a supervised data. The proposed work is based on unsupervised data that is there is no labelled data and deep neural techniques is deployed to get the target output. Machine learning algorithms are compared with proposed deep learning techniques using TensorFlow and Keras in the aspect of accuracy. Deep learning methodology outfits the existing rule based classification and hybrid logistic regression algorithm in terms of accuracy. The designed methodology is tested on the public MIT-BIH arrhythmia database, classifying four kinds of abnormal beats. The proposed approach based on deep learning technique offered a better performance, improving the results when compared to machine learning approaches of the state-of-the-art


In order to take notes of the speech delivered by the VIPs in the short time short hand language is employed. Mainly there are two shorthand languages namely Pitman and Teeline. An automatic shorthand language recognition system is essential in order to make use of the handheld devices for speedy conversion to the original text. The paper addresses and compares the recognition of the Teeline alphabets using the Machine learning (SVM and KNN) and deep learning (CNN) techniques. The dataset has been prepared using the digital pen and the same is processed and stored using the android application. The prepared dataset is fed to the proposed system and accuracy of recognition is compared. Deep learning technique gave higher accuracy compared to machine learning techniques. MATLAB 2018b platform is used for implementation of the experimental setup.


2019 ◽  
Author(s):  
Ananya Bhattacharjee ◽  
Md. Shamsuzzoha Bayzid

AbstractBackgroundDue to the recent advances in sequencing technologies and species tree estimation methods capable of taking gene tree discordance into account, notable progress has been achieved in constructing large scale phylogenetic trees from genome wide data. However, substantial challenges remain in leveraging this huge amount of molecular data. One of the foremost among these challenges is the need for efficient tools that can handle missing data. Popular distance-based methods such as neighbor joining and UPGMA require that the input distance matrix does not contain any missing values.ResultsWe introduce two highly accurate machine learning based distance imputation techniques. One of our approaches is based on matrix factorization, and the other one is an autoencoder based deep learning technique. We evaluate these two techniques on a collection of simulated and biological datasets, and show that our techniques match or improve upon the best alternate techniques for distance imputation. Moreover, our proposed techniques can handle substantial amount of missing data, to the extent where the best alternate methods fail.ConclusionsThis study shows for the first time the power and feasibility of applying deep learning techniques for imputing distance matrices. The autoencoder based deep learning technique is highly accurate and scalable to large dataset. We have made these techniques freely available as a cross-platform software (available at https://github.com/Ananya-Bhattacharjee/ImputeDistances).


2017 ◽  
Vol 10 (13) ◽  
pp. 489 ◽  
Author(s):  
Saheb Ghosh ◽  
Sathis Kumar B ◽  
Kathir Deivanai

Deep learning methods are a great machine learning technique which is mostly used in artificial neural networks for pattern recognition. This project is to identify the Whales from under water Bioacoustics network using an efficient algorithm and data model, so that location of the whales can be send to the Ships travelling in the same region in order to avoid collision with the whale or disturbing their natural habitat as much as possible. This paper shows application of unsupervised machine learning techniques with help of deep belief network and manual feature extraction model for better results.


Author(s):  
Masurah Mohamad ◽  
Ali Selamat

Deep learning has recently gained the attention of many researchers in various fields. A new and emerging machine learning technique, it is derived from a neural network algorithm capable of analysing unstructured datasets without supervision. This study compared the effectiveness of the deep learning (DL) model vs. a hybrid deep learning (HDL) model integrated with a hybrid parameterisation model in handling complex and missing medical datasets as well as their performance in increasing classification. The results showed that 1) the DL model performed better on its own, 2) DL was able to analyse complex medical datasets even with missing data values, and 3) HDL performed well as well and had faster processing times since it was integrated with a hybrid parameterisation model.


Author(s):  
Myeong Sang Yu

The revolutionary development of artificial intelligence (AI) such as machine learning and deep learning have been one of the most important technology in many parts of industry, and also enhance huge changes in health care. The big data obtained from electrical medical records and digitalized images accelerated the application of AI technologies in medical fields. Machine learning techniques can deal with the complexity of big data which is difficult to apply traditional statistics. Recently, the deep learning techniques including convolutional neural network have been considered as a promising machine learning technique in medical imaging applications. In the era of precision medicine, otolaryngologists need to understand the potentialities, pitfalls and limitations of AI technology, and try to find opportunities to collaborate with data scientists. This article briefly introduce the basic concepts of machine learning and its techniques, and reviewed the current works on machine learning applications in the field of otolaryngology and rhinology.


Author(s):  
Zainab Mushtaq

Abstract: Malware is routinely used for illegal reasons, and new malware variants are discovered every day. Computer vision in computer security is one of the most significant disciplines of research today, and it has witnessed tremendous growth in the preceding decade due to its efficacy. We employed research in machine-learning and deep-learning technology such as Logistic Regression, ANN, CNN, transfer learning on CNN, and LSTM to arrive at our conclusions. We have published analysis-based results from a range of categorization models in the literature. InceptionV3 was trained using a transfer learning technique, which yielded reasonable results when compared with other methods such as LSTM. On the test dataset, the transferring learning technique was about 98.76 percent accurate, while on the train dataset, it was around 99.6 percent accurate. Keywords: Malware, illegal activity, Deep learning, Network Security,


Author(s):  
Vijaya Kumar Reddy Radha ◽  
Anantha N. Lakshmipathi ◽  
Ravi Kumar Tirandasu ◽  
Paruchuri Ravi Prakash

<p>Reinforcement learning is considered as a machine learning technique that is anxious with software agents should behave in particular environment. Reinforcement learning (RL) is a division of deep learning concept that assists you to make best use of some part of the collective return. In this paper evolving reinforcement learning algorithms shows possible to learn a fresh and understable concept by using a graph representation and applying optimization methods from the auto machine learning society. In this observe, we stand for the loss function, it is used to optimize an agent’s parameter in excess of its knowledge, as an imputational graph, and use traditional evolution to develop a population of the imputational graphs over a set of uncomplicated guidance environments. These outcomes in gradually better RL algorithms and the exposed algorithms simplify to more multifaceted environments, even though with visual annotations.</p>


2021 ◽  
Vol 2129 (1) ◽  
pp. 012083
Author(s):  
Gheyath Mustafa Zebari ◽  
Dilovan Asaad Zebari ◽  
Diyar Qader Zeebaree ◽  
Habibollah Haron ◽  
Adnan Mohsin Abdulazeez ◽  
...  

Abstract In the last decade, the Facial Expression Recognition field has been studied widely and become the base for many researchers, and still challenging in computer vision. Machine learning technique used in facial expression recognition facing many problems, since human emotions expressed differently from one to another. Nevertheless, Deep learning that represents a novel area of research within machine learning technology has the ability for classifying people’s faces into different emotion classes by using a Deep Neural Network (DNN). The Convolution Neural Network (CNN) method has been used widely and proved as very efficient in the facial expression recognition field. In this study, a CNN technique for facial expression recognition has been presented. The performance of this study has been evaluated using the fer2013 dataset, the total number of images has been used. The accuracy of each epoch has been tested which is trained on 29068 samples, validate on 3589 samples. The overall accuracy of 69.85% has been obtained for the proposed method.


Sign in / Sign up

Export Citation Format

Share Document