scholarly journals E2 structures and derived Koszul duality in string topology

2019 ◽  
Vol 19 (1) ◽  
pp. 239-279
Author(s):  
Andrew Blumberg ◽  
Michael Mandell
2021 ◽  
Vol 9 ◽  
Author(s):  
Yuri Berest ◽  
Ajay C. Ramadoss ◽  
Yining Zhang

Abstract Let X be a simply connected closed oriented manifold of rationally elliptic homotopy type. We prove that the string topology bracket on the $S^1$ -equivariant homology $ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $ of the free loop space of X preserves the Hodge decomposition of $ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $ , making it a bigraded Lie algebra. We deduce this result from a general theorem on derived Poisson structures on the universal enveloping algebras of homologically nilpotent finite-dimensional DG Lie algebras. Our theorem settles a conjecture of [7].


2010 ◽  
Vol 3 (2) ◽  
pp. 424-442 ◽  
Author(s):  
Richard A. Hepworth
Keyword(s):  

2010 ◽  
Vol 89 (1) ◽  
pp. 23-49 ◽  
Author(s):  
VOLODYMYR MAZORCHUK

AbstractWe give a complete picture of the interaction between the Koszul and Ringel dualities for graded standardly stratified algebras (in the sense of Cline, Parshall and Scott) admitting linear tilting (co)resolutions of standard and proper costandard modules. We single out a certain class of graded standardly stratified algebras, imposing the condition that standard filtrations of projective modules are finite, and develop a tilting theory for such algebras. Under the assumption on existence of linear tilting (co)resolutions we show that algebras from this class are Koszul, that both the Ringel and Koszul duals belong to the same class, and that these two dualities on this class commute.


1995 ◽  
Vol 80 (1) ◽  
pp. 293-293 ◽  
Author(s):  
V. Ginzburg ◽  
M. Kapranov
Keyword(s):  

Author(s):  
Ben Elias ◽  
Shotaro Makisumi ◽  
Ulrich Thiel ◽  
Geordie Williamson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document