scholarly journals Khovanov homology and gauge theory

Author(s):  
Edward Witten
Author(s):  
Edward Witten

In the first of these two lectures I describe a gauge theory approach to understanding quantum knot invariants as Laurent polynomials in a complex variable q. The two main steps are to reinterpret three-dimensional Chern-Simons gauge theory in four dimensional terms and then to apply electric-magnetic duality. The variable q is associated to instanton number in the dual description in four dimensions. In the second lecture, I describe how Khovanov homology can emerge upon adding a fifth dimension.


Author(s):  
John Iliopoulos

All ingredients of the previous chapters are combined in order to build a gauge invariant theory of the interactions among the elementary particles. We start with a unified model of the weak and the electromagnetic interactions. The gauge symmetry is spontaneously broken through the BEH mechanism and we identify the resulting BEH boson. Then we describe the theory known as quantum chromodynamics (QCD), a gauge theory of the strong interactions. We present the property of confinement which explains why the quarks and the gluons cannot be extracted out of the protons and neutrons to form free particles. The last section contains a comparison of the theoretical predictions based on this theory with the experimental results. The agreement between theory and experiment is spectacular.


This volume contains lectures delivered at the Les Houches Summer School ‘Integrability: from statistical systems to gauge theory’ held in June 2016. The School was focussed on applications of integrability to supersymmetric gauge and string theory, a subject of high and increasing interest in the mathematical and theoretical physics communities over the past decade. Relevant background material was also covered, with lecture series introducing the main concepts and techniques relevant to modern approaches to integrability, conformal field theory, scattering amplitudes, and gauge/string duality. The book will be useful not only to those working directly on integrablility in string and guage theories, but also to researchers in related areas of condensed matter physics and statistical mechanics.


Sign in / Sign up

Export Citation Format

Share Document