scholarly journals 2P303 Visualization of COPII vesicle formation process on artificial membrane. : Role of GTP hydrolysis(Native and artificial biomembranes,Oral Presentations)

2007 ◽  
Vol 47 (supplement) ◽  
pp. S188
Author(s):  
Kazuhito V. Tabata ◽  
Ken Sato ◽  
Toru Ide ◽  
Takayuki Nishizaka ◽  
Akihiko Nakano ◽  
...  
2019 ◽  
Vol 166 (2) ◽  
pp. 115-119 ◽  
Author(s):  
Kota Saito ◽  
Miharu Maeda

Abstract Proteins synthesized within the endoplasmic reticulum (ER) are exported from ER exit sites via coat protein complex II (COPII)-coated vesicles. Although the mechanisms of COPII-vesicle formation at the ER exit sites are highly conserved among species, vertebrate cells secrete a wide range of materials, including collagens and chylomicrons, which form bulky structures within the ER that are too large to fit into conventional carriers. Transport ANd Golgi Organization 1 (TANGO1) was initially identified as a cargo receptor for collagens but has been recently rediscovered as an organizer of ER exit sites. We would like to review recent advances in the mechanism of large cargo secretion and organization of ER exit sites through the function of TANGO1.


2010 ◽  
Vol 50 (3) ◽  
pp. 130-131
Author(s):  
Kazuhito V. TABATA ◽  
Hiroyuki NOJI

2010 ◽  
pp. 167-182
Author(s):  
Kazuhito V. Tabata ◽  
Ken Sato ◽  
Toru Ide ◽  
Hiroyuki Noji

2008 ◽  
Vol 48 (supplement) ◽  
pp. S160
Author(s):  
Kazuhito V. Tabata ◽  
Ken Sato ◽  
Toru Ide ◽  
Takayuki Nishizaka ◽  
Akihiko Nakano ◽  
...  

Author(s):  
Hendrik Linz ◽  
Henrik Beuther ◽  
Maryvonne Gerin ◽  
Javier R. Goicoechea ◽  
Frank Helmich ◽  
...  

AbstractThe far-infrared (FIR) regime is one of the wavelength ranges where no astronomical data with sub-arcsecond spatial resolution exist. None of the medium-term satellite projects like SPICA, Millimetron, or the Origins Space Telescope will resolve this malady. For many research areas, however, information at high spatial and spectral resolution in the FIR, taken from atomic fine-structure lines, from highly excited carbon monoxide (CO), light hydrides, and especially from water lines would open the door for transformative science. A main theme will be to trace the role of water in proto-planetary discs, to observationally advance our understanding of the planet formation process and, intimately related to that, the pathways to habitable planets and the emergence of life. Furthermore, key observations will zoom into the physics and chemistry of the star-formation process in our own Galaxy, as well as in external galaxies. The FIR provides unique tools to investigate in particular the energetics of heating, cooling, and shocks. The velocity-resolved data in these tracers will reveal the detailed dynamics engrained in these processes in a spatially resolved fashion, and will deliver the perfect synergy with ground-based molecular line data for the colder dense gas.


2002 ◽  
Vol 159 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Jia-Shu Yang ◽  
Stella Y. Lee ◽  
Minggeng Gao ◽  
Sylvain Bourgoin ◽  
Paul A. Randazzo ◽  
...  

The role of GTPase-activating protein (GAP) that deactivates ADP-ribosylation factor 1 (ARF1) during the formation of coat protein I (COPI) vesicles has been unclear. GAP is originally thought to antagonize vesicle formation by triggering uncoating, but later studies suggest that GAP promotes cargo sorting, a process that occurs during vesicle formation. Recent models have attempted to reconcile these seemingly contradictory roles by suggesting that cargo proteins suppress GAP activity during vesicle formation, but whether GAP truly antagonizes coat recruitment in this process has not been assessed directly. We have reconstituted the formation of COPI vesicles by incubating Golgi membrane with purified soluble components, and find that ARFGAP1 in the presence of GTP promotes vesicle formation and cargo sorting. Moreover, the presence of GTPγS not only blocks vesicle uncoating but also vesicle formation by preventing the proper recruitment of GAP to nascent vesicles. Elucidating how GAP functions in vesicle formation, we find that the level of GAP on the reconstituted vesicles is at least as abundant as COPI and that GAP binds directly to the dilysine motif of cargo proteins. Collectively, these findings suggest that ARFGAP1 promotes vesicle formation by functioning as a component of the COPI coat.


Sign in / Sign up

Export Citation Format

Share Document