scholarly journals A Network Pharmacology Study on the Molecular Mechanism of Protocatechualdehyde in the Treatment of Diabetic Cataract

2021 ◽  
Vol Volume 15 ◽  
pp. 4011-4023
Author(s):  
Xiao Cheng ◽  
Zhihui Song ◽  
Xin Wang ◽  
Shanshan Xu ◽  
Liming Dong ◽  
...  
2021 ◽  
Vol 29 ◽  
pp. 239-256
Author(s):  
Qian Wang ◽  
Lijing Du ◽  
Jiana Hong ◽  
Zhenlin Chen ◽  
Huijian Liu ◽  
...  

BACKGROUND: Shanmei Capsule is a famous preparation in China. However, the related mechanism of Shanmei Capsule against hyperlipidemia has yet to be revealed. OBJECTIVE: To elucidate underlying mechanism of Shanmei Capsule against hyperlipidemia through network pharmacology approach and molecular docking. METHODS: Active ingredients, targets of Shanmei Capsule as well as targets for hyperlipidemia were screened based on database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed via Database for Annotation, Visualization, and Integrated Discovery (DAVID) 6.8 database. Ingredient-target-disease-pathway network was visualized utilizing Cytoscape software and molecular docking was performed by Autodock Vina. RESULTS: Seventeen active ingredients in Shanmei Capsule were screened out with a closely connection with 34 hyperlipidemia-related targets. GO analysis revealed 40 biological processes, 5 cellular components and 29 molecular functions. A total of 15 signal pathways were enriched by KEGG pathway enrichment analysis. The docking results indicated that the binding activities of key ingredients for PPAR-α are equivalent to that of the positive drug lifibrate. CONCLUSIONS: The possible molecular mechanism mainly involved PPAR signaling pathway, Bile secretion and TNF signaling pathway via acting on MAPK8, PPARγ, MMP9, PPARα, FABP4 and NOS2 targets.


2015 ◽  
Vol 173 ◽  
pp. 91-99 ◽  
Author(s):  
Yi-min Ma ◽  
Xin-zhuang Zhang ◽  
Zhen-zhen Su ◽  
Na Li ◽  
Liang Cao ◽  
...  

2021 ◽  
Author(s):  
Jing Yang ◽  
Chao-Tao Tang ◽  
Ruiri Jin ◽  
Bixia Liu ◽  
Peng Wang ◽  
...  

Abstract Huanglian jiedu decoction (HLJDD) is a heat-clearing and detoxifying agent composed of four kinds of Chinese herbal medicine. Previous studies have shown that HLJDD can improve the inflammatory response of ulcerative colitis (UC) and maintain intestinal barrier function. However, its molecular mechanism is not completely clear. In this study, we verified the bioactive components (BCI) and potential targets of HLJDD in the treatment of UC by means of network pharmacology and molecular docking, and constructed the pharmacological network and PPI network. Then the core genes were enriched by GO and KEGG. Finally, the bioactive components were docked with the key targets to verify the binding ability between them. A total of 54 active components related to UC were identified. Ten genes are considered to be very important to PPI network. Functional analysis showed that these target genes were mainly involved in the regulation of cell response to different stimuli, IL-17 signal pathway and TNF signal pathway. The results of molecular docking showed that the active components of HLJDD had good affinity with Hub gene. This study systematically elucidates the "multi-component, multi-target, multi-pathway" mechanism of anti-UC with HLJDD for the first time, suggesting that HLJDD or its active components may be candidate drugs for the treatment of ulcerative colitis.


2021 ◽  
Author(s):  
Yi-Wei Zhu ◽  
Du Li ◽  
Ting-Jie Ye ◽  
Feng-Jun Qiu ◽  
Xiao-Ling Wang ◽  
...  

Abstract Background: Alcoholic fatty liver disease (AFLD) is the first stage of the alcoholic liver disease course. Yin-Chen-Hao-Tang (YCHT) has a good clinical effect on the treatment of AFLD, but its molecular mechanism has not been elucidated. In this study, we tried to explore the molecular mechanism of YCHT in improving hepatocyte steatosis in AFLD mice through network pharmacology and RNA sequencing (RNA-Seq) transcriptomics. Methods: Network pharmacological methods were used to analyze the potential therapeutic signaling pathways and targets of YCHT on AFLD. Then, the AFLD mice model was induced and YCHT was administered concurrently. Liver injury was measured by serum alanine aminotransferase (ALT) activity and liver tissue H&E staining, and liver steatosis was determined by serum triglyceride (TG) level and liver tissue Oil Red staining. The molecular mechanism of YCHT on prevention and treatment of mice AFLD was investigated according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the differential expression genes data obtained by liver tissue RNA-Seq. Finally, the key signaling pathway and targets of YCHT on AFLD were verified in the ethanol-induced AFLD hepatocyte model by pathway inhibition experiments.Results: The results of network pharmacology analysis showed that YCHT may exert its pharmacological effect on AFLD through 312 potential targets which are involved in many signaling pathways including the PPAR signaling pathway. AFLD mice experiments results showed that YCHT markedly decreased mice serum ALT activity and serum TG levels. YCHT also significantly improved alcohol-induced hepatic injury and steatosis in mice livers. Furthermore, both KEGG analysis of RNA-Seq and AFLD hepatocyte model experiments showed that the PPAR signaling pathway should be the most relevant pathway of YCHT in the prevention and treatment of AFLD. YCHT could remarkably reduce the expression of PPARγ which is related to the lipogenesis pathway. YCHT also could increase the expression of PPARα which is related to the lipolysis pathway. Conclusions: Our study discovered that PPARγ and PPARα are the key targets and the PPAR signaling pathway is the main signaling pathway for YCHT to prevent and treat AFLD.


2021 ◽  
Vol 18 (10) ◽  
pp. 2067-2074
Author(s):  
Yun-Bin Jiang ◽  
Mei Zhong ◽  
Ting Huang ◽  
Zhong-Hua Dai ◽  
Xing-Bao Tao ◽  
...  

Purpose: To determine the molecular mechanism involved in the anti-migraine effect of Asari Radix et Rhizoma (ARR) using network pharmacology. Methods: The compounds present in ARR were identified through information retrieval from literature and public databases, and were screened based on absorption, distribution, metabolism, excretion and toxicity. Target genes related to the selected compounds and migraine were identified or predicted from public databases. Hub genes in ARR against migraine were identified through analysis of interactions in overlapping genes between compounds and migraine target genes, based on STRING database. Gene enrichment analysis of overlapping genes was performed using Database for Annotation, Visualization and Integrated Discovery. Results: A total of 138 compounds were selected as potential bioactive compounds in ARR. Target genes related to the selected compounds (611 genes) and migraine (278 genes) were obtained, including 71 overlapping genes. The hub genes in the anti-migraine effect of ARR were BDNF, IL6, COMT, APP and TNF. Gene enrichment analysis showed the top 10 biological processes or pathways involved in the mechanism of anti-migraine action of ARR. The tissue source of the overlapping genes was not limited to the brain. The results from gene enrichment analysis revealed that the effect of ARR on migraine was holistic, which is characteristic of traditional Chinese medicines. Conclusion: Network pharmacology has been used to decipher the molecular mechanism involved in the action of ARR against migraine. The results provide a scientific basis for the clinical effect of ARR on migraine.


2020 ◽  
Author(s):  
Xiaoqing Shi ◽  
Haosheng Zhang ◽  
Yue Hu ◽  
Xiaochen Li ◽  
Songjiang Yin ◽  
...  

Abstract Objective: The molecular mechanism of Salviae Miltiorrhizae Radix et Rhizoma (SMRR) in the treatment of knee osteoarthritis (KOA) was analyzed based on network pharmacology.Methods: Active components and potential targets of SMRR were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). KOA targets were obtained from the OMIM, DisGeNET, DrugBank, PharmGKB and GeneCards Databases. The potential targets of SMRR in the treatment of KOA were identified by Venn diagram. A protein-protein interaction network was generated with the STRING database. Visualization of the interactions in a potential pharmacodynamic component-target network was accomplished with Cytoscape software. The DAVID database and R software were used for Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation analyses of common targets. Molecular docking of the potential leading components, as determined by efficacy with the core target molecules, was performed with Discovery Studio.Results: Fifty-seven potential pharmacodynamic components and 58 potential targets of SMRR in the treatment of KOA were found. Bioinformatics analyses showed that the IL-17, HIF-1 and TNF signaling pathways, as well as the AGE-RAGE signaling pathway in cases of diabetic complications, are related to the molecular mechanism of SMRR in the treatment of KOA. Molecular docking results showed that luteolin, Tanshinone IIA, Cryptotanshinone and other components of SMRR had strong affinity for MYC, STAT3, CASP3, JUN, CCND1, PTGS2, EGFR, MAPK1, AKT1, VEGFA and other targets.Conclusion: SMRR indirectly regulates IL-17, HIF-1, TNF and other signal transduction pathways by regulating the expression of proteins including PTGS2, MAPK1, EGFR and CASP3, thus playing a role in promoting chondrocyte proliferation, improving microcirculation, eliminating free radicals, and inhibiting inflammatory factors.


Sign in / Sign up

Export Citation Format

Share Document