scholarly journals MORPHOMETRIC ANAYSIS OF THE MAJOR VALLEY SYSTEMS AROUND BENGALURU

2021 ◽  
Vol 9 (07) ◽  
pp. 991-1002
Author(s):  
Pavithra C.J ◽  
◽  
Balakrishna H.B ◽  
Aravinda P.T ◽  
◽  
...  

The three major Valley systems of Bengaluru namely Vrishabhavathi Valley, Hebbal Valley and Kormangala-Challaghatta Valley houses many lakes and play a very important role in its hydrological processes. The morphometric analysis helps us to learn about the characteristics of the underlying rock type, pervious nature of soil, slope gradients, runoff behavior and water retention potential within the Valley systems. Morphometric analysis was carried out for Linear, areal and relief aspects. The Survey of India topographical maps and Digital Elevation Model data were used to prepare the base map and the drainage maps with the help of GIS software. The Strahler system of stream ranking was adopted. Among the three Valleys, Vrishabhavathi Valley is observed to be the largest Valley in terms of area and perimeter. Vrishabhavathi Valley basin has sixth order stream as the highest stream order where as the other two Valleys have fifth order stream as the highest order. The drainage pattern formed within the Valley systems was observed to be dendritic. The watershed shape factor showed that the Vrishabhavathi Valley is elongated in shape where as the K-C Valley and the Hebbal Valleys are less elongated in shape comparatively. The drainage density of the three Valleys revealed that they fall under coarse drainage density classification. The relief aspects of the three Valleys exhibit low reliefs indicating a flat surface. This helps in designing a sustainable management plan for the three major Valley systems in terms of their conservation and also ensure sustainable soil and water usage within the Valley systems.

Author(s):  
Varsha Mandale ◽  
Ravindra Bansod

Remote sensing and geographic information system (GIS) are two of the most important tools used to evaluate the morphometric characteristics of watersheds, as morphometric analysis of river basins using conventional methods, is very time to consume, laborious and cumbersome. In this study, the morphometric characteristics of the Adula watershed were calculated using ESRI- ArcGIS. The areal extent of the Adula watershed varies between 19°32’40” N to 19°43’2” N latitude and 74°10’15” E to 74°48’18” E longitude. The topographic sheets obtained from the survey of India on a scale of 1:50000 and the SRTM (Spectral Radar Topographic Mission) Digital Elevation Model of 30 m resolution, were used for watershed delineation and deriving the linear (stream order, stream number, bifurcation ratio), aerial (basin area, basin perimeter, drainage density, form factor, stream frequency, and circulatory ratio), relief (height of  outlet of watershed, basin relief, maximum height of watershed, total basin relief, absolute relief, relief ratio, ruggedness number) aspects. bifurcation ratio for varies from 3.0 to 8.33, indicating the elongated shape of the watershed. Drainage density factor values were 4.43 km/km2 indicating high drainage densities and 0.132 indicating an elongated basin with lower peaks respectively. Ruggedness number was 3.78 showing a dendritic and radial pattern with drainage texture. Therefore this morphometric analysis using geo-processing techniques employed in this study will assist in planning and decision making in the watershed development and management.


2015 ◽  
Vol 1 (2) ◽  
pp. 21-25 ◽  
Author(s):  
Sujit Kumar ◽  
Tapasi Bhandary

In this paper, a case-study is presented to differentiate between Landsat and Aster data by morphometric analysis. For this the Aster and Landsat digital elevation model (DEM) data of the same study area was taken and then both the data was delineated for the same (common) outlet. The major differences found in between Landsat and Aster data after delineation are in the number of first order stream, axial length of streams, average width and size of watershed. The case study presented will be useful in demonstrating the fact that Landsat DEM has better accuracy than Aster DEM for land cover areas when the DEM data characteristic are kept similar.


2019 ◽  
Vol 46 (3) ◽  
pp. 75
Author(s):  
Leonardo Lima dos Santos ◽  
Vinícius De Oliveira Ribeiro ◽  
Jonailce Oliveira Diodato

The morphometric characterization of watersheds has great importance and appliance for the prediction of phenomena such as floods. The objective of this study was to delimitate and characterize morphometrically the hydrographic basins that encompass the urban area of the Municipality of Dourados / MS – Brazil, which derived from estimated physical variables obtained by applying a license-free GIS software. Based on a Digital Elevation Model (DEM), the following microcatchment characteristics were determined: area, perimeter, slope, altitude, and watercourse orders. Four morphometric parameters that express a direct or inverse relationship with the water quantity factors of a hydrographic source were calculated and analyzed, being them: compactness coefficient, shape factor, circularity index, and drainage density. By comparing the studied basin results, it was observed that Água Limpa, Água Boa, and Laranja Azeda basin streams are more susceptible to flooding, especially considering the measurement factor and drainage density.


Hydrological analysis and for the integrated development of the watershed, it is essential to do geomorphometric analysis. A comprehensive study of drainage pattern, topography, and most essential erosion status can be analyzed through morphometric analysis. Prioritization of sub-watersheds according to the capacity of the water table of Nashik district watershed was evaluated by linear, aerial and relief aspects. The morphometric analysis has been used for the prioritization of seven sub-watersheds of the Godavari river basin in the Nashik district, Maharashtra. Using the Digital Elevation Model, the sub-watersheds were delineated in ArcMap 10.4 and also few extraction works were done in Erdas Imagine. Drains and their corresponding characteristics including stream length, stream order, stream frequency, circulatory ratio, texture ratio, compactness coefficient, elongation ratio, form factor, drainage density, bifurcation ratio is analyzed and their value has evaluated for each sub-watershed by using the Remotely Sensed-data and geospatial techniques. Finally based on morphometric behavior the priority has been given to each sub-watershed & rank has assigned to them, the most sensitive sub-watershed is identified. The reveled analysis says stream order ranges from 1 to 6. The overall stream segments of all order are 1,115 in the watershed. On the account of morphometric analysis prioritization of watershed is done. Resulting prioritization rank assigned to each watershed based upon the evaluated compound parameter given to them. Those Sub-watersheds having least compound parameter value has assigned the highest priority. Further, sub watersheds accordingly categorized into three type i.e. high (3.4-3.8), medium (4.0-4.2) and low (4.4) priority based on their maximum priority score (4.5) and minimum score (3.4).


2021 ◽  
Vol 82 (3) ◽  
pp. 210-212
Author(s):  
Petko Bozhkov

The aim of the following case study is to analyze quantitatively the drainage network in the Vitosha Mountain, SW Bulgaria. Drainage network is outlined from topographic maps and extracted from digital elevation model (DEM). Several morphometric parameters are calculated – drainage density, channel-segment frequency, total stream length, etc. Hierarchy of tributaries and main rivers is also discussed.


Author(s):  
Shambhu Nath Sing Mura

Morphometric analysis is used to understand the hydrological process and assessment of hydrological characteristics of surface water basin. In the present paper, an attempt has been made to study the detail morphometric characteristics of Kulbera and Daurighara river basin, which are tributaries of Subarnarekha River in Purulia district, West Bengal. For detailed study, SRTM data has been used for preparing digital elevation model (DEM), and Geographic Information System (GIS) has been used for the analysis of linear, areal, and relief aspects of the basins. Watershed boundary, flow accumulation, flow length, stream ordering have been prepared by using ILWIS 3.0. Different thematic maps i.e. elevation, geology, drainage density, slope and longitudinal profiles of river channels have been prepared by using QGIS 3.0 and MapInfo 10.0 GIS software. More than 58 morphometric parameters of all aspects of the basins have been computed. On the basis of morphometric analysis it has been argued that the erosional development has progressed well beyond maturity and that the drainage development is controlled by lithology. Besides,it can be concluded that this study will also be very useful for rain water harvesting planning and watershed management.


2017 ◽  
Author(s):  
Indra Riyanto ◽  
Lestari Margatama

The recent degradation of environment quality becomes the prime cause of the recent occurrence of natural disasters. It also contributes in the increase of the area that is prone to natural disasters. Flood history data in Jakarta shows that flood occurred mainly during rainy season around January – February each year, but the flood area varies each year. This research is intended to map the flood potential area in DKI Jakarta by segmenting the Digital Elevation Model data. The data used in this research is contour data obtained from DPP–DKI with the resolution of 1 m. The data processing involved in this research is extracting the surface elevation data from the DEM, overlaying the river map of Jakarta with the elevation data. Subsequently, the data is then segmented using watershed segmentation method. The concept of watersheds is based on visualizing an image in three dimensions: two spatial coordinates versus gray levels, in which there are two specific points; that are points belonging to a regional minimum and points at which a drop of water, if placed at the location of any of those points, would fall with certainty to a single minimum. For a particular regional minimum, the set of points satisfying the latter condition is called the catchments basin or watershed of that minimum, while the points satisfying condition form more than one minima are termed divide lines or watershed lines. The objective of this segmentation is to find the watershed lines of the DEM image. The expected result of the research is the flood potential area information, especially along the Ciliwung river in DKI Jakarta.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Caleb Akoji Odiji ◽  
Olaide Monsor Aderoju ◽  
Joseph Bisong Eta ◽  
Idris Shehu ◽  
Adama Mai-Bukar ◽  
...  

AbstractThe upper Benue River watershed is undergoing remarkable modifications due to man-made and natural phenomena. Hence, an evaluation is required to understand the hydrological process of the watershed for planning and management strategies. This study aimed to assess the morphometric characteristics and prioritize the upper Benue River watershed. The boundary of the watershed and sub-watersheds, as well as stream networks, was extracted from the digital elevation model (DEM) coupled with hydrological and topographic maps. Twenty-eight morphometric parameters under three categories, i.e. linear, areal, and relief aspects were computed and mapped. Findings from the study revealed that the watershed is a seventh stream order system characterized by a dendritic drainage pattern. The result also showed that 4821 streams were extracted with a cumulative length of 30,232.84 km. The hypsometric integral of the watershed was estimated to be 0.22, indicating that it is in the old stage. In the prioritization of the watershed, the morphometric variables were utilized to calculate and classify the compound factor. The result showed that sub-watersheds 12, 16, 18, 24, 26, and 27 were ranked as very high priority for which conservation measures are required to mitigate the risk of flood and erosion. The outcome of this study can be used by decision-makers for sustainable watershed management and planning.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Benjamin Wullobayi Dekongmen ◽  
Amos Tiereyangn Kabo-bah ◽  
Martin Kyereh Domfeh ◽  
Emmanuel Daanoba Sunkari ◽  
Yihun Taddele Dile ◽  
...  

AbstractFloods in Ghana have become a perennial challenge in the major cities and communities located in low-lying areas. Therefore, cities and communities located in these areas have been classified as potential or natural flood-prone zones. In this study, the Digital Elevation Model (DEM) of the Accra Metropolis was used to assess the drainage density and elevation patterns of the area. The annual population estimation data and flood damages were assessed to understand the damages and population trend. This research focused primarily on the elevation patterns, slope patterns, and drainage density of the Accra Metropolis. Very high drainage density values, which range between 149 and 1117 m/m2, showed very high runoff converging areas. High drainage density was also found to be in the range of 1117–1702 m/m2, which defined the area as a high runoff converging point. The medium and low converging points of runoff were also found to be ranging between 1702–2563 m/m2 and 2563–4070 m/m2, respectively. About 32% of the study area is covered by natural flood-prone zones, whereas flood-prone zones also covered 33% and frequent flood zones represent 25%. Areas in the Accra Metropolis that fall in the Accraian and Togo series rock types experience high floods. However, the lineament networks (geological structures) that dominate the Dahomeyan series imply that the geological structures in the Dahomeyan series also channel the runoffs into the low-lying areas, thereby contributing to the perennial flooding in the Accra Metropolis.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peirong Lin ◽  
Ming Pan ◽  
Eric F. Wood ◽  
Dai Yamazaki ◽  
George H. Allen

AbstractSpatial variability of river network drainage density (Dd) is a key feature of river systems, yet few existing global hydrography datasets have properly accounted for it. Here, we present a new vector-based global hydrography that reasonably estimates the spatial variability of Dd worldwide. It is built by delineating channels from the latest 90-m Multi-Error-Removed Improved Terrain (MERIT) digital elevation model and flow direction/accumulation. A machine learning approach is developed to estimate Dd based on the global watershed-level climatic, topographic, hydrologic, and geologic conditions, where relationships between hydroclimate factors and Dd are trained using the high-quality National Hydrography Dataset Plus (NHDPlusV2) data. By benchmarking our dataset against HydroSHEDS and several regional hydrography datasets, we show the new river flowlines are in much better agreement with Landsat-derived centerlines, and improved Dd patterns of river networks (totaling ~75 million kilometers in length) are obtained. Basins and estimates of intermittent stream fraction are also delineated to support water resources management. This new dataset (MERIT Hydro–Vector) should enable full global modeling of river system processes at fine spatial resolutions.


Sign in / Sign up

Export Citation Format

Share Document