scholarly journals COMPUTATIONAL ANALYSIS OF FLAME BEHAVIOR EJECTED FROM UP TO DOWN INSIDE A VERTICAL COMBUSTION CHAMBER OF A BOILER USING IRAQI NATURAL GAS AS A FUEL.

2017 ◽  
Vol 5 (1) ◽  
pp. 1926-1931
Author(s):  
Dr.AyadYounis. Abdulla. ◽  
◽  
OmarAbdulhadiMustafa. Almohammed. ◽  
Author(s):  
A. P. Shaikin ◽  
I. R. Galiev

The article analyzes the influence of chemical composition of hythane (a mixture of natural gas with hydrogen) on pressure in an engine combustion chamber. A review of the literature has showed the relevance of using hythane in transport energy industry, and also revealed a number of scientific papers devoted to studying the effect of hythane on environmental and traction-dynamic characteristics of the engine. We have studied a single-cylinder spark-ignited internal combustion engine. In the experiments, the varying factors are: engine speed (600 and 900 min-1), excess air ratio and hydrogen concentration in natural gas which are 29, 47 and 58% (volume).The article shows that at idling engine speed maximum pressure in combustion chamber depends on excess air ratio and proportion hydrogen in the air-fuel mixture – the poorer air-fuel mixture and greater addition of hydrogen is, the more intense pressure increases. The positive effect of hydrogen on pressure is explained by the fact that addition of hydrogen contributes to increase in heat of combustion fuel and rate propagation of the flame. As a result, during combustion, more heat is released, and the fuel itself burns in a smaller volume. Thus, the addition of hydrogen can ensure stable combustion of a lean air-fuel mixture without loss of engine power. Moreover, the article shows that, despite the change in engine speed, addition of hydrogen, excess air ratio, type of fuel (natural gas and gasoline), there is a power-law dependence of the maximum pressure in engine cylinder on combustion chamber volume. Processing and analysis of the results of the foreign and domestic researchers have showed that patterns we discovered are applicable to engines of different designs, operating at different speeds and using different hydrocarbon fuels. The results research presented allow us to reduce the time and material costs when creating new power plants using hythane and meeting modern requirements for power, economy and toxicity.


2002 ◽  
Vol 125 (1) ◽  
pp. 40-45 ◽  
Author(s):  
K. P. Vanoverberghe ◽  
E. V. Van den Bulck ◽  
M. J. Tummers ◽  
W. A. Hu¨bner

Five different flame states are identified in a compact combustion chamber that is fired by a 30 kW swirl-stabilized partially premixed natural gas burner working at atmospheric pressure. These flame states include a nozzle-attached tulip shaped flame, a nonattached torroidal-ring shaped flame (SSF) suitable for very low NOx emission in a gas turbine combustor and a Coanda flame (CSF) that clings to the bottom wall of the combustion chamber. Flame state transition is generated by changing the swirl number and by premixing the combustion air with 70% of the natural gas flow. The flame state transition pathways reveal strong hysteresis and bifurcation phenomena. The paper also presents major species concentrations, temperature and velocity profiles of the lifted flame state and the Coanda flame and discusses the mechanisms of flame transition and stabilization.


Author(s):  
André Perpignan V. de Campos ◽  
Fernando L. Sacomano Filho ◽  
Guenther C. Krieger Filho

Gas turbines are reliable energy conversion systems since they are able to operate with variable fuels and independently from seasonal natural changes. Within that reality, micro gas turbines have been increasing the importance of its usage on the onsite generation. Comparatively, less research has been done, leaving more room for improvements in this class of gas turbines. Focusing on the study of a flexible micro turbine set, this work is part of the development of a low cost electric generation micro turbine, which is capable of burning natural gas, LPG and ethanol. It is composed of an originally automotive turbocompressor, a combustion chamber specifically designed for this application, as well as a single stage axial power turbine. The combustion chamber is a reversed flow type and has a swirl stabilized combustor. This paper is dedicated to the diagnosis of the natural gas combustion in this chamber using computational fluid dynamics techniques compared to measured experimental data of temperature inside the combustion chamber. The study emphasizes the near inner wall temperature, turbine inlet temperature and dilution holes effectiveness. The calculation was conducted with the Reynolds Stress turbulence model coupled with the conventional β-PDF equilibrium along with mixture fraction transport combustion model. Thermal radiation was also considered. Reasonable agreement between experimental data and computational simulations was achieved, providing confidence on the phenomena observed on the simulations, which enabled the design improvement suggestions and analysis included in this work.


2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 2699-2706
Author(s):  
Guoqing Shen

In order to study a new clean and efficient combustion mode, which can relieve the pressure of traditional energy and ensure low emissions, in this study, a diesel/natural gas dual fuel engine is designed by non-dominant sorting genetic algorithm (NSGA-?), and its thermodynamic characteristics are studied. The WP10.290 Diesel engine is modified into a diesel/natural gas dual fuel engine. The emissions of harmful substances and thermal efficiency of the modified engine under different working conditions are compared. The combustion chamber structure and adaptability between combustion chamber and injection parameters are optimized by using NSGA-II algorithm and CFD software. The results show that the emission of NOx and CH4 and the fuel consumption rate can be reduced simultaneously by using the composite combustion model compared with the original engine. When the CH4 emission is close to zero, the fuel consumption rate decreases obviously, and NOx slightly increases. When the angle between the injection holes is 141.57? the amount of NOx in the cylinder is large. When the injection advance angle is 21.91?CA, the pressure in the cylinder is the highest, the CH4 production is the lowest, the NOx production is higher, and the oxygen content in the combustion mixture is less. The NOx production is the lowest. diesel/natural gas dual fuel engine can ensure efficient combustion while reducing emissions. In this study, the performance of the dual fuel engine at various speeds can be further studied, which can provide theoretical support for the design of diesel/natural gas dual fuel engine.


Author(s):  
Usama J. Mizher ◽  
Peter A. Velmisov

Abstract. The search for new solutions in the field of energy, preventing negative impact on the environment, is one of the priority tasks for modern society. Natural gas occupies a stable position in the demand of the UES of Russia for fossil fuel. Biogas is a possible alternative fuel from organic waste. Biogas has an increased content of carbon dioxide, which affects the speed of flame propagation, and a lower content of methane, which reduces its heat of combustion. However, the combined combustion of natural gas and biogas, provided that the mixture of fuel and oxidizer is well mixed, can, on the one hand, reduce the maximum adiabatic temperature in the combustion chamber of power boilers at TPPs, and, on the other, increase the stability of biogas combustion. For the combined combustion of natural gas and biogas in operating power boilers, it is necessary to reconstruct the existing burners. For a high-quality reconstruction of burners capable of providing stable and low-toxic combustion of fuel, it is important to have theoretical data on the combustion effect of combustion of combinations of organic fuels on the temperature distribution in the combustion zone and on its maximum value. In this paper, self-similar solutions of the energy equation for axisymmetric motion of a liquid (gas) in a model of a viscous incompressible medium are obtained. Basing on them, a stationary temperature field in swirling jets is constructed. A set of programs based on the ANSYS Fluent software solver has been developed for modeling and researching of thermal and gas-dynamic processes in the combustion chamber. On the basis of the k - ϵ (realizable) turbulence model, the combustion process of a swirling fuel-air mixture is simulated. The results of an analytical and numerical study of the temperature and carbon dioxide distribution in the jet are presented.


Author(s):  
Jinlong Liu ◽  
Cosmin E. Dumitrescu

Increased utilization of natural-gas (NG) in the transportation sector can decrease the use of petroleum-based fuels and reduce greenhouse-gas emissions. Heavy-duty diesel engines retrofitted to NG spark ignition (SI) can achieve higher efficiencies and low NOx, CO, and HC emissions when operated under lean-burn conditions. To investigate the SI lean-burn combustion phenomena in a bowl-in-piston combustion chamber, a conventional heavy-duty direct-injection CI engine was converted to SI operation by replacing the fuel injector with a spark plug and by fumigating NG in the intake manifold. Steady-state engine experiments and numerical simulations were performed at several operating conditions that changed spark timing, engine speed, and mixture equivalence ratio. Results suggested a two-zone NG combustion inside the diesel-like combustion chamber. More frequent and significant late burn (including double-peak heat release rate) was observed for advanced spark timing. This was due to the chamber geometry affecting the local flame speed, which resulted in a faster and thicker flame in the bowl but a slower and thinner flame in the squish volume. Good combustion stability (COVIMEP < 3 %), moderate rate of pressure rise, and lack of knocking showed promise for heavy-duty CI engines converted to NG SI operation.


Author(s):  
Long Liu ◽  
Xia Wen ◽  
Qian Xiong ◽  
Xiuzhen Ma

Abstract With energy shortages and increasing environmental problems, natural gas, as a clean energy, has the advantages of cheap price and large reserves and has become one of the main alternative fuels for marine diesel engines. For large bore natural gas engines, pre-chamber spark plug ignition can be used to increase engine efficiency. The engine mainly relies on the flame ejected from the pre-chamber to ignite the mixture of natural gas and air in the main combustion chamber. The ignition flame in the main combustion chamber is the main factor affecting the combustion process. Although the pre-chamber natural gas engines have been extensively studied, the characteristics of combustion in the pre-chamber and the development of ignition flame in the main combustion chamber have not been fully understood. In this study, a two-zone phenomenological combustion model of pre-chamber spark-ignition natural gas engines is established based on the exchange of mass and energy of the gas flow process in the pre-chamber and the main combustion chamber. The basic characteristics of the developed model are: a spherical flame surface is used to describe the combustion state in the pre-chamber, and according to the turbulent jet theory, the influence of turbulence on the state of the pilot flame is considered based on the Reynolds number. According to the phenomenological model, the time when the flame starts to be injected from the pre-chamber to the main combustion chamber, and the parameters such as the length of the pilot flame are analyzed. The model was verified by experimental data, and the results showed that the calculated values were in good agreement with the experimental values. It provides an effective tool for mastering the law of flame development and supporting the optimization of combustion efficiency.


Author(s):  
Jinlong Liu ◽  
Cosmin Emil Dumitrescu

Increased utilization of natural gas (NG) in the transportation sector can decrease the use of petroleum-based fuels and reduced greenhouse gas emissions. Heavy-duty diesel engines retrofitted to NG spark ignition (SI) can achieve higher efficiencies and low NOX, CO, and hydrocarbon (HC) emissions when operated under lean-burn conditions. To investigate the SI lean-burn combustion phenomena in a bowl-in-piston combustion chamber, a conventional heavy-duty direct-injection CI engine was converted to SI operation by replacing the fuel injector with a spark plug and by fumigating NG in the intake manifold. Steady-state engine experiments and numerical simulations were performed at several operating conditions that changed spark timing (ST), engine speed, and mixture equivalence ratio. Results suggested a two-zone NG combustion inside the diesel-like combustion chamber. More frequent and significant late-burn (including double-peak heat release rate) was observed for advanced ST. This was due to the chamber geometry affecting the local flame speed, which resulted in a faster and thicker flame in the bowl but a slower and thinner flame in the squish volume. Good combustion stability (COVIMEP < 3%), moderate rate of pressure-rise, and lack of knocking showed promise for heavy-duty CI engines converted to NG SI operation.


Sign in / Sign up

Export Citation Format

Share Document