scholarly journals FIRST REPORT ON CHEMICAL COMPOSITION AND BIOLOGICAL PROPERTIES OF VOLATILE OIL FROM Psidium firmum O. BERG LEAVES

Química Nova ◽  
2021 ◽  
Author(s):  
Cassia Fernandes ◽  
Pietro Chrystal ◽  
Alexandra Pereira ◽  
Ana Colli ◽  
Livia Stenico ◽  
...  

Brazil has the greatest plant diversity in the world. Many species exhibit a wide range of phytochemical compounds which can be exploited in food, agronomic, pharmacological and medicinal plant industries. Therefore, the chemical composition and in vitro bioactivities of volatile oil from Psidium firmum fresh leaves (PfVO) were investigated for the first time. GC-FID and GC-MS analyses revealed 28 compounds in PfVO. The major ones were α-selinene (20.8%), β-caryophyllene (16.5%) and nerolidol (10.4%). Results showed that PfVO affected the growth of Leishmania amazonensis promastigote forms in a dose-dependent manner; its IC50 value was 14.05 µg/mL. PfVO also exhibited antibacterial activity against Salmonella enteritidis, Yersinia enterocolitica, Staphylococcus aureus, Pseudomonas aeruginosa and Listeria monocytogenes; MIC values ranged from 25 µg/mL to 250 µg/mL. Moreover, PfVO promoted normal cell growth inhibition at 61.02 ± 1.97 µg/mL. Antiproliferative activity was observed against human tumor cell lines; IC50 values of MCF-7 cells, HeLa cells and M059J cells were 47.91 µg/mL, 73.78 µg/mL and 41.94 µg/mL, respectively. Results provided strong evidence of the promising potential of PfVO as a nature-based antileishmanial, antibacterial and antiproliferative agent.

Author(s):  
Ying Wang ◽  
Longzhu Li ◽  
Tao Ma ◽  
Xiu Cheng ◽  
Dachuan Liu

Background: Chalcones are precursors of flavonoids or isoflavonoids, and they are abundant in edible plants. Chalcones constitute an important group of natural and synthetic products with a wide range of pharmacological activities. Objective: To determine the seeds of the anti-tumor agents, we focused on the potential bioactive materials obtained from chalcone derivatives. Method: Two series of chalcone derivatives containing aminoguanidine or bis-chalone were designed, synthesized, and screened for their cytotoxicity, proliferation inhibition, and apoptosis-promoting activity in vitro against a panel of human tumor cell lines. Result: Among the various compounds studied in this work, 2-((E)-4-((E)-3-oxo-3-(p-tolyl)prop-1-en-1-yl)benzylidene)hydrazine-1-carboximidamide (5f) was the most potent, with IC50 values of 7.17 μM and 3.05 μM anti-proliferative activity in vitro against human hepatocarcinoma HepG2 cells and SMMC-7721 cells, respectively. This result showed that the compound possessed a certain degree of selectivity for human hepatocarcinoma cells, especially for SMMC-7721. Then, Annexin V/PI flow cytometry assay was used to investigate different concentrations of compound 5f to demonstrate the ability of compound 5f in inducing apoptosis of SMMC-7721 cells in a concentration-dependent manner. Finally, these results were further verified by Western blot analysis. Conclusion: Based on the collective results, compound 5f may be a promising anti-cancer compound, and may play a significant role in subsequent research.


2012 ◽  
Vol 84 (4) ◽  
pp. 1073-1080 ◽  
Author(s):  
Rodrigo L. Fabri ◽  
Elaine S. Coimbra ◽  
Ana C. Almeida ◽  
Ezequias P. Siqueira ◽  
Tânia M.A. Alves ◽  
...  

In our previous work (Fabri et al. 2009), we showed that different extracts of Mitracarpus frigidus had significant antibacterial, antifungal and leishmanicidal activities. In order to increase our knowledge about this species, this work assesses the chemical composition and the in vitro biological activity of its essential oil. Thus, the essential oil obtained by hydrodistillation of the aerial parts of M. frigidus was analyzed by GC/MS. Among several compounds detected, 11 were identified, being linalool and eugenol acetate the major components. The essential oil exhibited a moderate antibacterial effect against Staphyloccocus aureus, Bacillus cereus, Pseudomonas aeruginosa and Enterobacter cloacae (MIC 250 µg/mL). On the other hand, it showed a strong antifungal effect against Cryptoccocus neoformans (MIC 8 µg/mL) and Candida albicans (MIC 63 µg/mL). Expressive activity against L. major and L. amazonensis promastigote forms with IC50 values of 47.2 and 89.7 µg/mL, respectively, were also observed. In addition, the antioxidant activity was investigated through DPPH radical-scavenging and showed a significative activity with IC50 of 38 µg/mL. The cytotoxicity against Artemia salina was moderate with LC50 of 88 µg/mL. The results presented here are the first report on the chemical composition and biological properties of M. frigidus essential oil.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


2021 ◽  
Vol 22 (10) ◽  
pp. 5394
Author(s):  
Tomas Lidak ◽  
Nikol Baloghova ◽  
Vladimir Korinek ◽  
Radislav Sedlacek ◽  
Jana Balounova ◽  
...  

Multisubunit cullin-RING ubiquitin ligase 4 (CRL4)-DCAF12 recognizes the C-terminal degron containing acidic amino acid residues. However, its physiological roles and substrates are largely unknown. Purification of CRL4-DCAF12 complexes revealed a wide range of potential substrates, including MOV10, an “ancient” RNA-induced silencing complex (RISC) complex RNA helicase. We show that DCAF12 controls the MOV10 protein level via its C-terminal motif in a proteasome- and CRL-dependent manner. Next, we generated Dcaf12 knockout mice and demonstrated that the DCAF12-mediated degradation of MOV10 is conserved in mice and humans. Detailed analysis of Dcaf12-deficient mice revealed that their testes produce fewer mature sperms, phenotype accompanied by elevated MOV10 and imbalance in meiotic markers SCP3 and γ-H2AX. Additionally, the percentages of splenic CD4+ T and natural killer T (NKT) cell populations were significantly altered. In vitro, activated Dcaf12-deficient T cells displayed inappropriately stabilized MOV10 and increased levels of activated caspases. In summary, we identified MOV10 as a novel substrate of CRL4-DCAF12 and demonstrated the biological relevance of the DCAF12-MOV10 pathway in spermatogenesis and T cell activation.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3579
Author(s):  
Svetlana A. Popova ◽  
Evgenia V. Pavlova ◽  
Oksana G. Shevchenko ◽  
Irina Yu. Chukicheva ◽  
Aleksandr V. Kutchin

The pyrazoline ring is defined as a “privileged structure” in medicinal chemistry. A variety of pharmacological properties of pyrazolines is associated with the nature and position of various substituents, which is especially evident in diarylpyrazolines. Compounds with a chalcone fragment show a wide range of biological properties as well as high reactivity which is primarily due to the presence of an α, β-unsaturated carbonyl system. At the same time, bicyclic monoterpenoids deserve special attention as a source of a key structural block or as one of the pharmacophore components of biologically active molecules. A series of new diarylpyrazoline derivatives based on isobornylchalcones with different substitutes (MeO, Hal, NO2, N(Me)2) was synthesized. Antioxidant properties of the obtained compounds were comparatively evaluated using in vitro model Fe2+/ascorbate-initiated lipid peroxidation in the substrate containing brain lipids of laboratory mice. It was demonstrated that the combination of the electron-donating group in the para-position of ring B and OH-group in the ring A in the structure of chalcone fragment provides significant antioxidant activity of synthesized diarylpyrazoline derivatives.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2835
Author(s):  
Anna Stochmal ◽  
Bartosz Skalski ◽  
Rostyslav Pietukhov ◽  
Beata Sadowska ◽  
Joanna Rywaniak ◽  
...  

Although the major components of various organs of sea buckthorn have been identified (particularly phenolic compounds), biological properties of many of these phytochemicals still remain poorly characterized. In this study, we focused on the chemical composition and biological activity of preparations that were obtained from sea buckthorn twigs and leaves. The objective was to investigate cytotoxicity of these preparations against human fibroblast line HFF-1, using MTT reduction assay, their anti- or pro-oxidant activities against the effects of a biological oxidant -H2O2/Fe—on human plasma lipids and proteins in vitro (using TBARS and carbonyl groups as the markers of oxidative stress). Antimicrobial activity of the tested preparations against Gram-positive (Staphylococcus aureus, S. epidermidis, Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa), as well as against fungi (Candida albicans, C. glabrata) by the EUCAST-approved broth microdilution method, followed by growth on solid media, were also assessed. Our analysis showed significant differences in chemical composition and biological properties of the tested preparations (A–F). All tested preparations from sea buckthorn twigs (D–F) and one preparation from sea buckthorn leaves (preparation C) may be a new source of phenolic antioxidants for pharmacological and cosmetic applications.


1990 ◽  
Vol 10 (11) ◽  
pp. 5782-5795 ◽  
Author(s):  
D K Wiest ◽  
D K Hawley

Transcription from the adenovirus major late (ML) promoter has previously been shown to pause or terminate prematurely in vivo and in vitro at a site within the first intron of the major late transcription unit. We are studying the mechanism of elongation arrest at this site in vitro to define the DNA sequences and proteins that determine the elongation behavior of RNA polymerase II. Our assay system consists of a nuclear extract prepared from cultured human cells. With standard reaction conditions, termination is not observed downstream of the ML promoter. However, in the presence of Sarkosyl, up to 80% of the transcripts terminate 186 nucleotides downstream of the start site. Using this assay, we showed that the DNA sequences required to promote maximal levels of termination downstream of the ML promoter reside within a 65-base-pair region and function in an orientation-dependent manner. To test whether elongation complexes from the ML promoter were functionally homogeneous, we determined the termination efficiency at each of two termination sites placed in tandem. We found that the behavior of the elongation complexes was different at these sites, with termination being greater at the downstream site over a wide range of Sarkosyl concentrations. This result ruled out a model in which the polymerases that read through the first site were stably modified to antiterminate. We also demonstrated that the ability of the elongation complexes to respond to the ML termination site was promoter specific, as the site did not function efficiently downstream of a heterologous promoter. Taken together, the results presented here are not consistent with the simplest class of models that have been proposed previously for the mechanism of Sarkosyl-induced termination.


2021 ◽  
Vol 8 ◽  
Author(s):  
An Liu ◽  
Wenyuan Shi ◽  
Dongdong Lin ◽  
Haihui Ye

C-type allatostatins (C-type ASTs) are a family of structurally related neuropeptides found in a wide range of insects and crustaceans. To date, the C-type allatostatin receptor in crustaceans has not been deorphaned, and little is known about its physiological functions. In this study, we aimed to functionally define a C-type ASTs receptor in the mud crab, Scylla paramamosian. We showed that C-type ASTs receptor can be activated by ScypaAST-C peptide in a dose-independent manner and by ScypaAST-CCC peptide in a dose-dependent manner with an IC50 value of 6.683 nM. Subsequently, in vivo and in vitro experiments were performed to investigate the potential roles of ScypaAST-C and ScypaAST-CCC peptides in the regulation of ecdysone (20E) and methyl farnesoate (MF) biosynthesis. The results indicated that ScypaAST-C inhibited biosynthesis of 20E in the Y-organ, whereas ScypaAST-CCC had no effect on the production of 20E. In addition, qRT-PCR showed that both ScypaAST-C and ScypaAST-CCC significantly decreased the level of expression of the MF biosynthetic enzyme gene in the mandibular organ, suggesting that the two neuropeptides have a negative effect on the MF biosynthesis in mandibular organs. In conclusion, this study provided new insight into the physiological roles of AST-C in inhibiting ecdysone biosynthesis. Furthermore, it was revealed that AST-C family peptides might inhibit MF biosynthesis in crustaceans.


2021 ◽  
Vol 18 ◽  
Author(s):  
Danielle R. Gonçalves ◽  
Thais B. Cesar ◽  
John A. Manthey ◽  
Paulo I. Costa

Background: Citrus polymethoxylated flavones (PMFs) reduce the synthesis of liver lipoproteins in animal and in vitro cell assays, but few studies have evaluated the direct effects of their metabolites on this highly regulated process. Objective: To investigate the effects of representative metabolites of PMF on the secretion of liver lipoproteins using the mammalian cell Huh7.5. Method: In this study, the influences of three PMFs and five previously isolated PMF metabolites on hepatic apoB-100 secretion and microsomal transfer protein (MTP) activity were evaluated. Tangeretin (TAN), nobiletin (NOB) and 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF), and their glucuronides (TAN-Gluc, NOB-Gluc and HMF-Gluc) and oxidatively demethylated metabolites (TAN-OH, NOB-OH, HMF-OH) were incubated with Huh7.5 cells to measure their inhibitory effects on lipid synthesis. Results: The results showed that TAN, HMF and TAN-OH reduced the secretion of apoB-100 in a dose-dependent manner, while NOB and the other tested metabolites showed no inhibition. MTP activity in the Huh7.5 cells was significantly reduced in the presence of low concentrations of TAN, and in high concentrations of NOB-OH. This study also showed that PMFs and PMF metabolites produced a wide range of effects on apoB-100 secretion and MTP activity. Conclusion: The results suggest that while PMFs and their metabolites control dyslipidemia in vivo, the inhibition of MTP activity cannot be the only pathway influenced by these compounds.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3910 ◽  
Author(s):  
Min-Seon Kim ◽  
Jin-Soo Park ◽  
You Chul Chung ◽  
Sungchan Jang ◽  
Chang-Gu Hyun ◽  
...  

Biorenovation is a microbial enzyme-catalyzed structural modification of organic compounds with the potential benefits of reduced toxicity and improved biological properties relative to their precursor compounds. In this study, we synthesized a novel compound verified as formononetin 7-O-phosphate (FMP) from formononetin (FM) using microbial biotransformation. We further compared the anti-inflammatory properties of FMP to FM in lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells. We observed that cell viabilities and inhibitory effects on LPS-induced nitric oxide (NO) production were greater in FMP-treated RAW 264.7 cells than in their FM-treated counterparts. In addition, FMP treatment suppressed the production of proinflammatory cytokines such as prostaglandin-E2 (PGE2), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner and concomitantly decreased the mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). We also found that FMP exerted its anti-inflammatory effects through the downregulation of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa B (NF-κB) signaling pathways. In conclusion, we generated a novel anti-inflammatory compound using biorenovation and demonstrated its efficacy in cell-based in vitro assays.


Sign in / Sign up

Export Citation Format

Share Document