LEFT-INVARIANT ALMOST PARA-COMPLEX EINSTEINIAN STRUCTURES ON SIX-DIMENSIONAL NILPOTENT LIE GROUPS
As is well known, there are 34 classes of isomorphic simply connected six-dimensional nilpotent Lie groups. Of these, only 26 classes admit left-invariant symplectic structures and only 18 admit left-invariant complex structures. There are five six-dimensional nilpotent Lie groups G , which do not admit neither symplectic, nor complex structures and, therefore, can be neither almost pseudo- Kӓhlerian, nor almost Hermitian. In this work, these Lie groups are being studied. The aim of the paper is to define new left-invariant geometric structures on the Lie groups under consideration that compensate, in some sense, the absence of symplectic and complex structures. Weakening the closedness requirement of left-invariant 2-forms ω on the Lie groups, non-degenerated 2-forms ω are obtained, whose exterior differential dω is also non-degenerated in Hitchin sense [6]. Therefore, the Hitchin’s operator K dω is defined for the 3-form dω . It is shown that K dω defines an almost complex or almost para-complex structure for G and the couple ( ω, dω ) defines pseudo-Riemannian metrics of signature (2,4) or (3,3), which is Einsteinian for 4 out of 5 considered Lie groups. It gives new examples of multiparametric families of Einstein metrics of signature (3,3) and almost para-complex structures on six-dimensional nilmanifolds, whose structural group is being reduced to SL (3 , R) SO (3 , 3). On each of the Lie groups under consideration, compatible pairs of left-invariant forms (ω, Ω), where Ω = d ω, are obtained. For them the defining properties of half-flat structures are naturally fulfilled: d Ω = 0 and ωΩ = 0. Therefore, the obtained structures are not only almost Einsteinian para-complex, but also pseudo- Riemannian half-flat.