scholarly journals Chemical Composition and Antimicrobial Activities of Essential Oil from the Leaves of Acalypha wilkesiana on Pathogenic Microorganisms

Author(s):  
Elizabeth Osibote ◽  
Solayide Adesida ◽  
Simeon Nwafor ◽  
Happiness Iluobe
2020 ◽  
Vol 15 (12) ◽  
pp. 1934578X2098123
Author(s):  
Peng-fei Yang ◽  
Hui Lu ◽  
Qiong-bo Wang ◽  
Zhi-wei Zhao ◽  
Qiang Liu ◽  
...  

Detailed chemical constituents of essential oil from the Pterocephalus hookeri leaves and its antimicrobial activities were investigated in this study. The essential oil, obtained by hydrodistillation, was characterized by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry analyses. Among the 90 identified compounds, hexadecanoic acid (21.27%), phytol (8.03%), furfural (7.08%), oleic acid (5.25%), and phytone (4.56%) were the major components. In the antimicrobial assay, the essential oil showed strong inhibitory activities against Escherichia coli, Candida albicans, and Staphylococcus aureus with minimum inhibitory concentration values of 31.3, 62.5, and 125 µg/mL, respectively. To our knowledge, this is the first report concerning chemical composition and antimicrobial activities of the essential oil from Pterocephalus hookeri.


2013 ◽  
Vol 62 (12) ◽  
pp. 973-980 ◽  
Author(s):  
Anis Ben Hsouna ◽  
Nihed Ben Halima ◽  
Slim Abdelkafi ◽  
Naceur Hamdi

Author(s):  
Rini Yanti ◽  
Hermina Nurdiawati ◽  
Puji Wulandari ◽  
Yudi Pranoto ◽  
Muhammad Nur Cahyanto

Turmeric rhizomes are commonly used in the culinary, pharmaceutical, herbal medicine, and beverage industries. On the contrary, turmeric leaves are underutilized.  The aims of this study were to extract the essential oil from turmeric leaves, characterize the chemical composition of the oil, and determine its antifungal activities against aflatoxin-producing fungi. Steam distillation was used to extract the essential oil from turmeric leaves. The properties of the oil were identified using GC-MS. Antimicrobial activities against Aspergillus flavus and Aspergillus parasiticus were determined. Spores of the fungi were inoculated into potato dextrose agar plates supplemented with various quantities of turmeric leaves essential oil and incubated at 30°C for 7 days. The oil's primary constituents were α-phelandrene(46.70 %), followed by α-terpinolene (17.39 %), 1,8-cineole (8.78 %), benzene (4.24 %), and 2-β pinene (3.64 %). At low (<1%) concentrations, the oil delayed mycelia formation and at high concentrations it significantly inhibit fungal growth (at 1%) and completely inhibit colony formation (at 2%) Additionally, the result show that turmeric leaves oil can inhibited fungus growth at the lowest concentration (0.25 %) when compared to the control over a seven-day incubation period.


2018 ◽  
Vol 121 ◽  
pp. 405-410 ◽  
Author(s):  
Rachid Ait Babahmad ◽  
Abdellah Aghraz ◽  
Aziz Boutafda ◽  
Eleni G. Papazoglou ◽  
Petros A. Tarantilis ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1904 ◽  
Author(s):  
Magdalena de J. Rostro-Alanis ◽  
Juan Báez-González ◽  
Cynthia Torres-Alvarez ◽  
Roberto Parra-Saldívar ◽  
José Rodriguez-Rodriguez ◽  
...  

Oregano (Poliomintha longiflora) essential oil (Ooil) is a product of high commercial value and many applications, including chemotherapy. Aiming to achieve the best use of this resource, the present study focuses on the characterization of separated fractions of Ooil by fractional vacuum distillation at low pressure. Four fractions (F1–F4) and undistilled oil (Unoil) were separated from Ooil and analyzed for their chemical composition and biological activities, such as antioxidant and antimicrobial activities. Gas chromatography–mass spectrometry shows differences in the composition among the fractions and Ooil. The amount of monoterpenes oxygenated (MO), sesquiterpenes hydrocarbon (SeH) and monoterpenes hydrocarbon (MH) varied between the fractions in ranges of 1.51–68.08, 3.31–25.12 and 1.91–97.75%, respectively. The major concentrations of MO and SeH were observed in F4 and Unoil. On the other hand, the highest concentrations of MH were found in F1 and F2, while the lowest were in F4 and Unoil. These results were correlated with the biological activity. Free-radical scavenging activity varied among fractions, with F4 and Unoil showing the highest activity. The antimicrobial test showed that F4 and Unoil had the highest activity in almost all cases. The correlation between the variables studied in the different fractions allows the definition of the particular properties for each one of them.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 453 ◽  
Author(s):  
Nhan Trong Le ◽  
Duc Viet Ho ◽  
Tuan Quoc Doan ◽  
Anh Tuan Le ◽  
Ain Raal ◽  
...  

The present study aimed to determine the antimicrobial activity and chemical composition of leaves-extracted essential oil of Leoheo domatiophorus Chaowasku, D.T. Ngo and H.T. Le (L. domatiophorus), including antibacterial, antimycotic, antitrichomonas and antiviral effects. The essential oil was obtained using hydrodistillation, with an average yield of 0.34 ± 0.01% (v/w, dry leaves). There were 52 constituents as identified by GC/MS with available authentic standards, representing 96.74% of the entire leaves oil. The essential oil was comprised of three main components, namely viridiflorene (16.47%), (-)-δ-cadinene (15.58%) and γ-muurolene (8.00%). The oil showed good antimicrobial activities against several species: Gram-positive strains: Staphylococcus aureus (two strains) and Enterococcus faecalis, with Minimum Inhibitory Concentration (MIC) and Minimum Lethal Concentration (MLC) values from 0.25 to 1% (v/v); Gram-negative strains such as Escherichia coli (two strains), Pseudomonas aeruginosa (two strains) and Klebsiella pneumoniae, with MIC and MLC values between 2% and 8% (v/v); and finally Candida species, having MIC and MLC between 0.12 and 4% (v/v).Antitrichomonas activity of the oil was also undertaken, showing IC50, IC90 and MLC values of 0.008%, 0.016% and 0.03% (v/v), respectively, after 48h of incubation. The essential oil resultedin being completely ineffective against tested viruses, ssRNA+ (HIV-1, YFV, BVDV, Sb-1, CV-B4), ssRNA- (hRSVA2, VSV), dsRNA (Reo-1), and dsDNA (HSV-1, VV) viruses with EC50 values over 100 µg/mL. This is the first, yet comprehensive, scientific report about the chemical composition and pharmacological properties of the essential oil in L. domatiophorus.


2012 ◽  
Vol 7 (9) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Megil J. McNeil ◽  
Roy B. R. Porter ◽  
Lawrence A. D. Williams

The chemical composition of the essential oil obtained from the aerial parts of Cleome serrata by hydrodistillation was analyzed by employing GC-FID, GC-MS and RI. Fourteen compounds comprising 90.4% of the total oil composition were characterized. The main components identified were ( Z)-phytol (53.0%) and di(2-ethylhexyl)-phthalate (DEHP) (14.7%). The oil was evaluated for its in vitro antimicrobial activities against nine pathogenic microorganisms using the filter paper disc diffusion method. Moderate antimicrobial activity was observed against five of the pathogens assayed. In addition, the essential oil was tested against the sweet potato weevil, Cylas formicarius elegantulus. Strong knockdown insecticidal activity was observed.


Sign in / Sign up

Export Citation Format

Share Document