Accumulation and rate of degradation of organotin compounds in coastal sediments along the Red Sea, Egypt

2020 ◽  
Vol 24 (5) ◽  
pp. 413-436
Author(s):  
Alaa M. Younis
Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 898
Author(s):  
Ibrahim M. Ghandour ◽  
Mohammed H. Aljahdali

Geochemical analysis of the 23 sediment samples collected from a short (0.6 m long) core retrieved from the coastal creek that was previously connecting the northern and southern Al-Shuaiba Lagoons, Red Sea, Saudi Arabia, was accomplished to assess the elemental enrichment levels and the natural and anthropogenic driving forces for this enrichment. Statistical analysis and upcore variation in elemental concentrations enabled subdivision of the core formally into three units, lower, middle, and upper. The enriched elements in the lower and middle units display poor to negative correlations with the enriched elements in the upper unit. The lower unit is enriched in elements (Mo, As, U, and Re) suggesting deposition under anoxic conditions, possibly related to the Medieval Climate Anomaly. The middle unit is enriched in the carbonate-related constituents (CaCO3, Ca, and Sr). The upper unit is enriched in elements that co-vary significantly with Al suggesting increased terrigenous supply associated with the construction of the road between the two lagoons. The enrichment of elements in the lower and middle units is naturally driven, whereas the enrichment of lithogenic elements in the upper unit, though of geogenic origin, is induced after the road construction.


Author(s):  
Khalid Awadh Al-Mutairi ◽  
Chee Kong Yap

The heavy metal (HM) pollution in sediment is of serious concern, particularly in the Red Sea environment. This study aimed to review and compile data on the concentrations of four HMs (Cd, Cu, Pb, and Zn) in the coastal surface sediments from the Red Sea, mainly from Saudi Arabia, Egypt, and Yemen, published in the literature from 1992 to 2021. The coastal sediments included those from mangrove, estuaries, and intertidal ecosystems. It was found that the mean values of Cd, Cu, Pb, and Zn in coastal Red Sea sediments were elevated and localized in high human activity sites in comparison to the earth upper continental crust and to reference values for marine sediments. From the potential ecological risk index (PERI) aspect, 32 reports (47.1%) were categorized as ‘considerable ecological risk’ and 23 reports (33.8%) as ‘very high ecological risk’. From the human health risk assessment (HHRA) aspect, the non-carcinogenic risk (NCR) values (HI values < 1.0) of Cd, Cu, Pb, and Zn represented no NCR for the ingestion and the dermal contact routes for sediments from the Red Sea countries. The reassessment of the HM data cited in the literature allowed integrative and accurate comparisons of the PERI and HHRA data, which would be useful in the management and sustainable development of the Red Sea area, besides being a helpful database for future use. This warrants extensive and continuous monitoring studies to understand the current and the projected HM pollution situation and to propose possible protective and conservative measures in the future for the resource-rich Red Sea ecosystem.


Sign in / Sign up

Export Citation Format

Share Document