scholarly journals Energy Efficient Encryption Algorithm for Low Resources Devices

2019 ◽  
Vol 3 (3) ◽  
pp. 26
Author(s):  
Bassam W. Aboshosha ◽  
Mohamed M. Dessouky ◽  
Ayman Elsayed

Saving energy is one of the most challenging aspects in the wireless network devices. Such devices are connected together to perform a certain task. A well-known example of these structures is the Wireless Sensor Network (WSN). Distributed WSN consists of several spread nodes in a harsh area. Therefore, once network has been established sensors replacement is not a possible option before at least five years which called network lifetime. So, it is a necessity to develop specific energy aware algorithms that could save battery lifetime as much as possible. Security and Privacy are the vital elements which need to be addressed to hold up to the trust of users in WSN environment. Because the majority of modern cryptographic algorithms were designed for desktop/server environments, many of these algorithms cannot be implemented in the constrained devices used by these networks. Symmetric key algorithms are a typically efficient and fast cryptosystem, so it has significant applications in many realms. For a WSN with constraint computational resources, the cryptosystem based on symmetric key algorithms is extremely suitable for such an agile and dynamic environment. Therefore, a Simple Lightweight Encryption Algorithm (SLEA) based on addition and subtraction operations and compact Substitution-boxes (S-boxes) is proposed for wireless networks due to its low energy consumption, simple hardware requirements and suitable level of security. In addition, the algorithm tries to overcome the limitations of both public- and symmetric-key protocols. It relies on a smart version of Feistel structure.

Although the IoT opens the door to endless possibilities, but it is also associated with many risks because all devices connected to the internet involve the use of data points. Therefore, it is essential to ensure IoT security and privacy. A review of existing research works highlights the usage of traditional security scheme based on cryptography for data transmission among IoT nodes and gateways. The proposed system proposes an integrated model that combines lightweight encryption technique with robust and cost-efficient authentication mechanism. The proposed system introduces digital signature-based authentication and complexity minimization in order to resist the involvement of any kind of unknown attacks. The simulation outcome of this model exhibits reliable security, faster response times and energy savings for IoT nodes.


2021 ◽  
Vol 10 (4) ◽  
pp. 67
Author(s):  
Najem Naji ◽  
Mohamed Riduan Abid ◽  
Nissrine Krami ◽  
Driss Benhaddou

The design of Wireless Sensor Networks (WSN) requires the fulfillment of several design requirements. The most important one is optimizing the battery’s lifetime, which is tightly coupled to the sensor lifetime. End-users usually avoid replacing sensors’ batteries, especially in massive deployment scenarios like smart agriculture and smart buildings. To optimize battery lifetime, wireless sensor designers need to delineate and optimize active components at different levels of the sensor’s layered architecture, mainly, (1) the number of data sets being generated and processed at the application layer, (2) the size and the architecture of the operating systems (OS), (3) the networking layers’ protocols, and (4) the architecture of electronic components and duty cycling techniques. This paper reviews the different relevant technologies and investigates how they optimize energy consumption at each layer of the sensor’s architecture, e.g., hardware, operating system, application, and networking layer. This paper aims to make the researcher aware of the various optimization opportunities when designing WSN nodes. To our knowledge, there is no other work in the literature that reviews energy optimization of WSN in the context of Smart Energy-Efficient Buildings (SEEB) and from the formerly four listed perspectives to help in the design and implementation of optimal WSN for SEEB.


2012 ◽  
Vol 49 (5) ◽  
pp. 34-40 ◽  
Author(s):  
Satyaki Roy ◽  
Navajit Maitra ◽  
Shalabh Agarwal ◽  
Joyshree Nath ◽  
Asoke Nath

Cyber Crime ◽  
2013 ◽  
pp. 1778-1796
Author(s):  
Xunhua Wang ◽  
Hua Lin

Entity authentication is a fundamental building block for system security and has been widely used to protect cyber systems. Nonetheless, the role of cryptography in entity authentication is not very clear, although cryptography is known for providing confidentiality, integrity, and non-repudiation. This chapter studies the roles of cryptography in three entity authentication categories: knowledge-based authentication, token-based authentication, and biometric authentication. For these three authentication categories, we discuss (1) the roles of cryptography in the generation of password verification data, in password-based challenge/response authentication protocol, and in password-authenticated key exchange protocols; (2) the roles of cryptography in both symmetric key-based and private key-based token authentications; (3) cryptographic fuzzy extractors, which can be used to enhance the security and privacy of biometric authentication. This systematic study of the roles of cryptography in entity authentication will deepen our understanding of both cryptography and entity authentication and can help us better protect cyber systems.


2018 ◽  
Vol 7 (6) ◽  
pp. 31-37 ◽  
Author(s):  
Muhammad Asif Habib ◽  
Mudassar Ahmad ◽  
Sohail Jabbar ◽  
Syed Hassan Ahmed ◽  
Joel J.P.C. Rodrigues

Sign in / Sign up

Export Citation Format

Share Document