scholarly journals Using very high resolution (VHR) imagery within a GEOBIA framework for gully mapping: an application to the Calhoun Critical Zone Observatory

2019 ◽  
Vol 22 (1) ◽  
pp. 219-234 ◽  
Author(s):  
A. Francipane ◽  
G. Cipolla ◽  
A. Maltese ◽  
G. La Loggia ◽  
L. V. Noto

Abstract Gully erosion is a form of accelerated erosion that may affect soil productivity, restrict land use, and lead to an increase of risk to infrastructure. An accurate mapping of these landforms can be difficult because of the presence of dense canopy and/or the wide spatial extent of some gullies. Even where possible, mapping of gullies through conventional field surveying can be an intensive and expensive activity. The recent widespread availability of very high resolution (VHR) imagery has led to a remarkable growth in the availability of terrain information, thus providing a basis for the development of new methodologies for analyzing Earth's surfaces. This work aims to develop a geographic object-based image analysis to detect and map gullies based on VHR imagery. A 1-meter resolution LIDAR DEM is used to identify gullies. The tool has been calibrated for two relatively large gullies surveyed in the Calhoun Critical Zone Observatory (CCZO) area in the southeastern United States. The developed procedure has been applied and tested on a greater area, corresponding to the Holcombe's Branch watershed within the CCZO. Results have been compared to previous works conducted over the same area, demonstrating the consistency of the developed procedure.

Estrabão ◽  
2021 ◽  
Vol 2 ◽  
pp. 41-85
Author(s):  
Vinicius Gonçalves

O presente trabalho apresenta um método para o mapeamento de vegetação, por um processo de classificação por regiões geográficas, denominado GEOBIA (Geographic Object-Based Image Analysis) considerado adequado para classificar imagens de muito alta resolução (very high resolution – VHR). É possível executar o procedimento com qualquer equipamento que disponha de um sensor RGB de boa qualidade e permita execução de aplicativos para plano de voo. O método foi desenvolvido com base em softwares de código aberto (open source) para evitar custos com licenças, em todas as etapas, desde a captação das imagens, elaboração de produtos cartográficos, processamento da classificação por regiões e conclusão mediante cálculos de áreas. O estudo foi aplicado em quatro áreas de interesse, todas na região da Grande Florianópolis-SC, contendo porções do ecossistema de Formações Pioneiras - Vegetação com Influência Marinha, também denominadas áreas de restinga, cujo principal alvo da classificação foi o mapeamento das áreas invadidas por Pinus sp. O método demonstrou útil para classificação de imagens em geral, podendo ser utilizado no manejo de outras espécies vegetais exóticas, ou até em outras aplicações ambientais.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 320
Author(s):  
Emilio Guirado ◽  
Javier Blanco-Sacristán ◽  
Emilio Rodríguez-Caballero ◽  
Siham Tabik ◽  
Domingo Alcaraz-Segura ◽  
...  

Vegetation generally appears scattered in drylands. Its structure, composition and spatial patterns are key controls of biotic interactions, water, and nutrient cycles. Applying segmentation methods to very high-resolution images for monitoring changes in vegetation cover can provide relevant information for dryland conservation ecology. For this reason, improving segmentation methods and understanding the effect of spatial resolution on segmentation results is key to improve dryland vegetation monitoring. We explored and analyzed the accuracy of Object-Based Image Analysis (OBIA) and Mask Region-based Convolutional Neural Networks (Mask R-CNN) and the fusion of both methods in the segmentation of scattered vegetation in a dryland ecosystem. As a case study, we mapped Ziziphus lotus, the dominant shrub of a habitat of conservation priority in one of the driest areas of Europe. Our results show for the first time that the fusion of the results from OBIA and Mask R-CNN increases the accuracy of the segmentation of scattered shrubs up to 25% compared to both methods separately. Hence, by fusing OBIA and Mask R-CNNs on very high-resolution images, the improved segmentation accuracy of vegetation mapping would lead to more precise and sensitive monitoring of changes in biodiversity and ecosystem services in drylands.


2019 ◽  
Vol 8 (1) ◽  
pp. 46 ◽  
Author(s):  
François Merciol ◽  
Loïc Faucqueur ◽  
Bharath Damodaran ◽  
Pierre-Yves Rémy ◽  
Baudouin Desclée ◽  
...  

Land cover mapping has benefited a lot from the introduction of the Geographic Object-Based Image Analysis (GEOBIA) paradigm, that allowed to move from a pixelwise analysis to a processing of elements with richer semantic content, namely objects or regions. However, this paradigm requires to define an appropriate scale, that can be challenging in a large-area study where a wide range of landscapes can be observed. We propose here to conduct the multiscale analysis based on hierarchical representations, from which features known as differential attribute profiles are derived over each single pixel. Efficient and scalable algorithms for construction and analysis of such representations, together with an optimized usage of the random forest classifier, provide us with a semi-supervised framework in which a user can drive mapping of elements such as Small Woody Features at a very large area. Indeed, the proposed open-source methodology has been successfully used to derive a part of the High Resolution Layers (HRL) product of the Copernicus Land Monitoring service, thus showing how the GEOBIA framework can be used in a big data scenario made of more than 38,000 Very High Resolution (VHR) satellite images representing more than 120 TB of data.


2019 ◽  
Vol 1 ◽  
pp. 1-8
Author(s):  
Ankita Medhi ◽  
Ashis Kumar Saha

<p><strong>Abstract.</strong> Rural roads in India have been considered as significant component for overall rural development. In India, the status of rural road connectivity is not up to the mark in some of the states. For providing better connectivity in the rural areas the information on roads are considered important. Detailed mapping of the roads can be useful for planning further road connectivity and proving access to facilities in the rural areas. For detailed mapping of roads higher resolution satellite imageries are required. Object based Image Analysis (OBIA) has emerged as a promising map analysis approach using high and very high resolution imageries. Feature extraction is one of the important aspect in OBIA extracting features such as roads, buildings, water bodies and other important features of interest from the high resolution imageries. In the present study, an attempt has been made to extract rural roads of Titabor in Jorhat district of Assam (India). Various OBIA based extraction methods have been used for extracting roads using high &amp; very high resolution Resourcesat-II (5.8&amp;thinsp;m) and Kompsat imagery (2.8&amp;thinsp;m MS &amp;amp; 0.7&amp;thinsp;m PAN). The results have been compared and relative advantages were evaluated.</p>


Author(s):  
Aybek Arifjanov ◽  
Shamshodbek Akmalov ◽  
Tursunoy Apakhodjaeva ◽  
Dilmira Tojikhodjaeva

Currently, more than 300 satellites have been launched into space and providing us with information about the Earth and processes which happens in there. Those information is very useful in all branches. These satellites started to modify and modernize year by year. Especially after 2000, satellites of very high resolution were launched into space. These satellites are sending information with very high resolution. To improve the speed and accuracy of the analysis of these images, scientists have developed a number of methods and programs. As a result, users often find face to difficulties with knowing which method or program is most effective. In this article, analyzed many researches and scientific studies and analyzed WorldView-2 (WV2) images of the Syrdarya Province based on field experiments and outlined the advantages and disadvantages of the method and tool. WV2 images are very important and provide much relevant data for all image analysis. VHR of these images can increase the quality and possibilities of all analysis. But usage of these images globally has not developed because of their costs. Square of satellite image capturing is very little for global analysis. to do global analysis we need 100 s of this image. That is why scientists use this data more often for correlation or creating general methods. That is why it has not been used for regional and global analysis. In our research, we used GEOBIA’s eCognition software. The accuracy of this program is 95 %. In arid regions like Uzbekistan, we recommend optimal software, analyse steps and data.


Sign in / Sign up

Export Citation Format

Share Document