Recycling of water treatment sludges in municipal wastewater treatment plants – a practical example

2008 ◽  
Vol 3 (1) ◽  
Author(s):  
K. Klinksieg ◽  
T. Dockhorn ◽  
N. Dichtl

Full-scale and lab-scale research experiments were conducted to determine the phosphorous precipitation efficiency of iron hydroxide sludge from drinking water treatment. During full-scale investigations at a wastewater treatment plant, ferric sludge was added to the inflow of the primary settling tank in a first experimental phase and to the inflow of the aeration tank in a second phase. In the outflow of the mechanical stage and in the outflow of the biological stage, a reduction of the PO4-P concentrations could be observed. The concentration of COD, the SVI and the filament abundance were not changed significantly by adding the ferric sludge to the wastewater treatment plant. In lab tests, improved precipitation efficiency of the ferric sludge could be achieved by using anaerobic conditions and acid pulping. The research showed that the wastewater treatment process can benefit from the reuse of ferric sludge from drinking waterworks and that this also presents an inexpensive recycling option for these sludges.

1973 ◽  
Vol 8 (1) ◽  
pp. 36-67 ◽  
Author(s):  
Deh Yuan Hsu

Abstract For finding the practicability of discharging water treatment plant sludge into the municipal sewer, the effects of synthetic aluminum hydroxide floc on several major units in an activated sludge wastewater treatment process were studied. It was found that the crucial effects were the increase in sludge production, either in the primary settling tank or in the secondary settling tank, and the retardation of the digestibility of the wasted sludge. The treatment efficiency, in terms of the quality of the treated wastewater, however, was improved. No toxic effects were found in the study of the functions of organic matter removal and the nitrification of activated sludge with the addition of aluminium hydroxide up to 300 mg Al/1 to the mixed liquor. The dewatering property of the wastewater sludge was improved with the addition of this chemical floc. Two processes are suggested. One is to discharge alum. sludge into the sewer at a suitable rate and the other is to discharge the water treatment wastes into a thickener in the wastewater treatment plant. The concentrated underflow can be mixed with the regular digested sludge for dewatering while the supernatant can be discharged either to the primary settling tank or to the aeration tank.


Author(s):  
Jingjie Yu ◽  
Guowei Gu ◽  
Shaopo Wang ◽  
Zhifeng Zhang ◽  
Liping Sun

A Modified Activated Sludge Model No.1 (M-ASM1), including six COD components (SI, SS, XI, XS, XH and SO) and three biochemical processes (aerobic growth of heterotrophs, aerobic decay of heterotrophs and hydrolysis of entrapped organics) is used to simulate the anaerobic hydrolysis-aeration- sedimentation treatment series in a full-scale textile dyeing wastewater treatment plant with an influent flowrate of 200,000 m3/d. M-ASM1 has the following characteristics: (1) the effect of temperature variation on biochemical reactions is included; (2) adding a parameter: ?. Using this parameter, the anaerobic hydrolysis tank and the aerobic initial compartments in which the dissolved oxygen concentrations are equal to "0 mg/L" can be differentiated; (3) the oxygen transfer coefficient KLa is excluded. Namely, as long as inputting the aeration flowrate, the pressure in the aeration pipe and other running data on air supply into this model, M-ASM1 can simulate the oxygen concentrations of each compartment in a plug-flow aeration tank.


2021 ◽  
Vol 281 ◽  
pp. 111872
Author(s):  
Teresa Castelo-Grande ◽  
Paulo A. Augusto ◽  
Javier Rico ◽  
Jorge Marcos ◽  
Roberto Iglesias ◽  
...  

2012 ◽  
Vol 7 (1) ◽  
Author(s):  
S. S. Fatima ◽  
S. Jamal Khan

In this study, the performance of wastewater treatment plant located at sector I-9 Islamabad, Pakistan, was evaluated. This full scale domestic wastewater treatment plant is based on conventional activated sludge process. The parameters which were monitored regularly included total suspended solids (TSS), mixed liquor suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), biological oxygen demand (BOD), and chemical oxygen demand (COD). It was found that the biological degradation efficiency of the plant was below the desired levels in terms of COD and BOD. Also the plant operators were not maintaining consistent sludge retention time (SRT). Abrupt discharge of MLSS through the Surplus Activated sludge (SAS) pump was the main reason for the low MLSS in the aeration tank and consequently low treatment performance. In this study the SRT was optimized based on desired MLSS concentration between 3,000–3,500 mg/L and required performance in terms of BOD, COD and TSS. This study revealed that SRT is a very important operational parameter and its knowledge and correct implementation by the plant operators should be mandatory.


2000 ◽  
Vol 41 (1) ◽  
pp. 177-185 ◽  
Author(s):  
G. Andreottola ◽  
P. Foladori ◽  
M. Ragazzi

The aim of this study was to evaluate the performance of a full-scale upgrading of an existing RBC wastewater treatment plant with a MBBR (Moving Bed Biofilm Reactor) system, installed in a tank previously used for sludge aerobic digestion. The full-scale plant is located in a mountain resort in the North-East of Italy. Due to the fact that the people varied during the year's seasons (2000 resident people and 2000 tourists) the RBC system was insufficient to meet the effluent standards. The MBBR applied system consists of the FLOCOR-RMP®plastic media with a specific surface area of about 160 m2/m3 (internal surface only). Nitrogen and carbon removal from wastewater was investigated over a 1-year period, with two different plant lay-outs: one-stage (only MBBR) and two stage system (MBBR and rotating biological contactors in series). The systems have been operated at low temperature (5–15°C). 50% of the MBBR volume (V=79 m3) was filled. The organic and ammonium loads were in the average 7.9 gCOD m−2 d−1 and 0.9 g NH4−N m−2 d−1. Typical carbon and nitrogen removals in MBBR at temperature lower than 8°C were respectively 73% and 72%.


2018 ◽  
Vol 85 (5) ◽  
Author(s):  
Veronica R. Brand ◽  
Laurel D. Crosby ◽  
Craig S. Criddle

ABSTRACTMultiple clades within a microbial taxon often coexist within natural and engineered environments. Because closely related clades have similar metabolic potential, it is unclear how diversity is sustained and what factors drive niche differentiation. In this study, we retrieved three near-complete Competibacter lineage genomes from activated sludge metagenomes at a full-scale pure oxygen activated sludge wastewater treatment plant. The three genomes represent unique taxa within theCompetibacteraceae. A comparison of the genomes revealed differences in capacity for exopolysaccharide (EPS) biosynthesis, glucose fermentation to lactate, and motility. Using quantitative PCR (qPCR), we monitored these clades over a 2-year period. The clade possessing genes for motility and lacking genes for EPS biosynthesis (CPB_P15) was dominant during periods of suspended solids in the effluent. Further analysis of operational parameters indicate that the dominance of the CPB_P15 clade is associated with low-return activated sludge recycle rates and low wasting rates, conditions that maintain relatively high levels of biomass within the system.IMPORTANCEMembers of the Competibacter lineage are relevant in biotechnology as glycogen-accumulating organisms (GAOs). Here, we document the presence of threeCompetibacteraceaeclades in a full-scale activated sludge wastewater treatment plant and their linkage to specific operational conditions. We find evidence for niche differentiation among the three clades with temporal variability in clade dominance that correlates with operational changes at the treatment plant. Specifically, we observe episodic dominance of a likely motile clade during periods of elevated effluent turbidity, as well as episodic dominance of closely related nonmotile clades that likely enhance floc formation during periods of low effluent turbidity.


2010 ◽  
Vol 61 (9) ◽  
pp. 2259-2266 ◽  
Author(s):  
Styliani Kantartzi ◽  
Paraschos Melidis ◽  
Alexander Aivasidis

In the present study, a laboratory scale system, consisting of a primary settling tank, a continuous stirred tank reactor and a clarifier were constructed and operated, using wastewater from the municipal wastewater treatment plant in Xanthi, Greece. The system operated under intermittent aeration in aerobic/anoxic conditions and feeding of the wastewater once in every cycle. The unit was inoculated with sludge, which originated from the recirculation stream of the local wastewater treatment plant. The wastewater was processed with hydraulic retention time (HRT) of 12 h, in which various experimental states were studied regarding the combination of aerobic and anoxic intervals. The wastewater was fed in limited time once in every cycle of aerobic/anoxic conditions at the beginning of the anoxic period. The two states that exhibited highest performance in nitrification and total nitrogen removal were, then, repeated with HRT of 10 h. The results show that, regarding the nitrification stage and the organic load removal, the intermittent system achieved optimum efficiency, with an overall removal of biological oxygen demand (BOD5) and ammonium nitrogen in the range of 93–96% and 91–95% respectively. As far as the total nitrogen removal is concerned, and if the stage of the denitrification is taken into account, the performance of the intermittent system surpassed other methods, as it is shown by the total Kjeldahl nitrogen (TKN) removal efficiency of 85–87%. These operating conditions suppressed the growth of filamentous organisms, a fact reflected at the SVI values, which were lower than 150 ml/g.


Sign in / Sign up

Export Citation Format

Share Document