Dimensioning of Aerated Grit Chambers and Use as a Highly Loaded Activated Sludge Process

1989 ◽  
Vol 21 (4-5) ◽  
pp. 13-22
Author(s):  
Jorg Londong

The aerated grit chamber has long been used to separate sand from sewage. Nevertheless, there are no definite and uniform recommendations for dimensioning, and there is little information in the literature about the degree of separation attainable. Thus, principles for dimensioning and the possible degree of separation are derived from measurements of large pilot scale plants, two-dimensional models, and existing aerated grit chambers. The following values for dimensioning were found in this work: a detention period of about 20 minutes; a width to depth ratio (w/d) of about 0.8; a minimal and maximal cross section area between 1 and about 7 m2; a flow velocity of 20 cm/s at the bottom of the aerated grit chamber. Simple formulae for the determination of the required amount of air can be given in relation to the w/d ratio, the depth of air injection and the kind of aeration used (fine or coarse bubble). The simultaneous use of an aerated grit chamber as an adsorption stage (highly loaded activated sludge process) is possible without additional air being required to maintain the velocity at the bottom of the grit chamber. For purely aerobic operation, however, the amount of air has to be increased.

1996 ◽  
Vol 33 (1) ◽  
pp. 311-323 ◽  
Author(s):  
A. Witteborg ◽  
A. van der Last ◽  
R. Hamming ◽  
I. Hemmers

A method is presented for determining influent readily biodegradable substrate concentration (SS). The method is based on three different respiration rates, which can be measured with a continuous respiration meter which is operated in a cyclic way. Within the respiration meter nitrification is inhibited through the addition of ATU. Simulations were used to develop the respirometry set-up and decide upon the experimental design. The method was tested as part of a large measurement programme executed at a full-scale plant. The proposed respirometry set-up has been shown to be suitable for a semi-on-line determination of an influent SS which is fully based on the IAWQ #1 vision of the activated sludge process. The YH and the KS play a major role in the principle, and should be measured directly from the process.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2461-2464 ◽  
Author(s):  
R. D. Tyagi ◽  
Y. G. Du

A steady-statemathematical model of an activated sludgeprocess with a secondary settler was developed. With a limited number of training data samples obtained from the simulation at steady state, a feedforward neural network was established which exhibits an excellent capability for the operational prediction and determination.


1994 ◽  
Vol 30 (3) ◽  
pp. 173-181 ◽  
Author(s):  
L. Knudsen ◽  
J. A. Pedersen ◽  
J. Munck

The work presented in this paper concerns the application of a two-stage aerobic activated sludge process for treatment of effluents from paper mills in Denmark. The paper describes both pilot-scale test results and fullscale experience with the process. The treatment process is characterised by a bigh-load first stage (2-4 kg COD/kg MLSSxd) followed by a low-load second stage to secure full nitrification and denitrification of remaining nitrogen compounds. The results of continuous pilot-scale tests show that it is possible to obtain a reduction of more than 85% of the incoming COD,01 and a 99% reduction of the incoming BOD5, resulting in an effluent quality of 230 mg CODsol/l and less than 10 mg BOD5/l. As indicated, practically all the biodegradable organic substances are removed by the process. The remaining fraction of soluble organics measured as COD is considered to be non-biodegradable by conventional biological treatment systems. The results produced in the pilot-scale tests are confirmed by the effluent qualities obtained in a full-scale treatment plant at another paper mill, involving an identical process concept. During the pilot-scale tests, special attention bas been paid to the removal of organic compounds, organic nitrogen as well as nutrients and nitrification. In addition, the sludge characteristics and the oxygen requirements have been considered.


1998 ◽  
Vol 31 (8) ◽  
pp. 509-514 ◽  
Author(s):  
Keisuke Iwahori ◽  
Koichiro Yamakawa ◽  
Masanori Fujita

1997 ◽  
Vol 35 (2-3) ◽  
pp. 123-130 ◽  
Author(s):  
Eva Dalentoft ◽  
Peter Thulin

One pilot plant study and two full scale studies have been carried out seeking for the optimal use of the Kaldnes suspended carrier process in treatment of wastewaters from the forest industry. The wastewater used in all three cases came from secondary fiber mills. The studies show that the Kaldnes process as a highly loaded stage (typically 15-25 kg COD/m3·d) in series with an activated sludge stage forms an efficient, stable and competitive combination process both regarding investment and operating costs. This is especially true when treating wastewaters with a composition that makes them unsuited for treatment in an activated sludge process. The flexibility and compactness of the Kaldnes suspended carrier process also makes it an ideal choice for upgrading of existing treatment plants.


2001 ◽  
Vol 34 (8) ◽  
pp. 1033-1039 ◽  
Author(s):  
HIROKI YOSHIKAWA ◽  
TAIZO HANAI ◽  
SHUTA TOMIDA ◽  
HIROYUKI HONDA ◽  
TAKESHI KOBAYASHI

2015 ◽  
Vol 668 ◽  
pp. 17-22 ◽  
Author(s):  
Caori Patricia Takeuchi ◽  
Martin Estrada ◽  
Dorian Luis Linero

Specimens of laminated bamboo Guadua angustifolia do not usually fail due to fiber breakage when submitted to shear stresses. The common failure mechanism in that case is slippage in the fiber-matrix interface, accompanied by degradation of the lignin matrix (parenchyma). In this study the shear strength of laminated bamboo Guadua angustifolia specimens was determined by tension tests reducing the cross section area. The perimeter of the slipped area was determined using digital image processing. Shear stresses were calculated taking into account the load and slipped area in specimens of two different groups, depending on the orientation of the laminated boards. It was found that the average value of the shear strength on pull out tests were 2.9 MPa, which is a mechanical property of the material that is useful, for example, in the analysis of the behavior of the joints, and analysis of the fracture process.


Sign in / Sign up

Export Citation Format

Share Document