Urban Stormwater Infiltration Perspectives

1994 ◽  
Vol 29 (1-2) ◽  
pp. 245-254 ◽  
Author(s):  
Govert Geldof ◽  
Per Jacobsen ◽  
Shoichi Fujita

In urban areas there are many problems with water management: combined sewer overflows, peak flows, man-induced droughts, consolidation of the soil, damage from frost penetration, etc. It is preferable to look at all these problems in relation to each other, according the concept of integrated water management. This paper focuses on the possibilities for urban stormwater infiltration. The results of three studies are presented. The first study concerns the flooding of the Shirako River in Tokyo. It is shown that with the help of stormwater infiltration the floods can be reduced remarkably. The second study concerns combined sewer overflows and the discharge from treatment plants for catchments in Denmark and the Netherlands. When looking at the total yearly discharge from the combined sewer and the treatment plant, it is shown that infiltration is more effective than detention. The third study shows the impact of urban stormwater infiltration on the ground water flux in an area in the south of the Netherlands. To relate the different results from the three studies an analogy is introduced with the human body. The combination of problems results in a so-called urban hang-over. It is shown that the positive effects of urban stormwater infiltration within an integrated approach are more significant than looking at all the effects separately.

1996 ◽  
Vol 31 (3) ◽  
pp. 453-472 ◽  
Author(s):  
M. Stirrup

Abstract The Regional Municipality of Hamilton-Wentworth operates a large combined sewer system which diverts excess combined sewage to local receiving waters at over 20 locations. On average, there are approximately 23 combined sewer overflows per year, per outfall. The region’s Pollution Control Plan, adopted by Regional Council in 1992, concluded that the only reasonable means of dealing with large volumes of combined sewer overflow in Hamilton was to intercept it at the outlets, detain it and convey it to the wastewater treatment plant after the storm events. The recommended control strategy relies heavily on off-line storage, with an associated expansion of the Woodward Avenue wastewater treatment plant to achieve target reductions of combined sewer overflows to 1–4 per year on average. The region has begun to implement this Pollution Control Plan in earnest. Three off-line detention storage tanks are already in operation, construction of a fourth facility is well underway, and conceptual design of a number of other proposed facilities has commenced. To make the best possible use of these facilities and existing in-line storage, the region is implementing a microcomputer-based real-time control system. A number of proposed Woodward Avenue wastewater treatment plant process upgrades and expansions have also been undertaken. This paper reviews the region's progress in implementing these control measures.


2010 ◽  
Vol 61 (1) ◽  
pp. 207-215 ◽  
Author(s):  
A. Casadio ◽  
M. Maglionico ◽  
A. Bolognesi ◽  
S. Artina

The Navile Channel (Bologna, Italy) is an ancient artificial water course derived from the Reno river. It is the main receiving water body for the urban catchment of Bologna sewer systems and also for the Waste Water Treatment Plant (WWTP) main outlet. The aim of this work is to evaluate the Combined Sewer Overflows (CSOs) impact on Navile Channel's water quality. In order to collect Navile flow and water quality data in both dry and wet weather conditions, two measuring and sampling stations were installed, right upstream and downstream the WWTP outflow. The study shows that even in case of low intensity rain events, CSOs have a significant effect on both water quantity and quality, spilling a considerable amount of pollutants into the Navile Channel and presenting also acute toxicity effects. The collected data shown a good correlations between the concentrations of TSS and of chemical compounds analyzed, suggesting that the most part of such substances is attached to suspended solids. Resulting toxicity values are fairly high in both measuring points and seem to confirm synergistic interactions between heavy metals.


2018 ◽  
Vol 19 (3) ◽  
pp. 953-966 ◽  
Author(s):  
D. Copetti ◽  
L. Marziali ◽  
G. Viviano ◽  
L. Valsecchi ◽  
L. Guzzella ◽  
...  

Abstract The paper reports results of four intensive campaigns carried out on the Seveso River (Milan metropolitan area, Italy) between 2014 and 2016, during intense precipitation events. Laboratory analyses were coupled with on-site, continuous measurements to assess the impact of pollutants on water quality based on both conventional and surrogate parameters. Laboratory data included total suspended solids, caffeine, total phosphorus and nitrogen, and their dissolved forms. Screening of trace metals (Cr, Cu, Pb, Ni, Cd) and PBDEs (polybromodiphenylethers) was carried out. Continuous measurements included water level, physico-chemical variables and turbidity. Nutrient concentrations were generally high (e.g. average total phosphorus > 1,000 μg/L) indicating strong sewage contributions. Among monitored pollutants Cr, Cu, Pb, and Cd concentrations were well correlated to TSS, turbidity and discharge, being bound mostly to suspended particulate matter. A different behavior was found for Ni, that showed an early peak occurring before the flow peak, as a result of first flush events. PBDEs correlated well to nutrient concentrations, showing the highest peaks soon after activation of the combined sewer overflows, likely because of its accumulation in sewers. In addition to showing the existing correlations between quality parameters, the paper highlights the importance of surrogate parameters as indicators of anthropic pollution inputs.


2005 ◽  
Vol 52 (5) ◽  
pp. 169-177 ◽  
Author(s):  
M. Rutsch ◽  
I. Müller ◽  
P. Krebs

When looking at acute receiving water impacts due to combined sewer overflows the characteristics of the background diurnal sewage flux variation may influence the peak loads from combined sewer overflows (CSO) and wastewater treatment plant (WWTP) effluent significantly. In this paper, effects on the dynamic compounds transported in the sewer, on CSO discharges and WWTP loading are evaluated by means of hydrodynamic simulations. The simulations are based on different scenarios for diurnal dry-weather flow variations induced by different infiltration rates.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 355-359
Author(s):  
L. Fuchs ◽  
D. Gerighausen ◽  
S. Schneider

For the city of Dresden a general master plan was set up based on investigations of the hydraulic capacity of the sewer system, the loads from combined sewer overflow and the treatment plant. The total emission from combined sewer overflows and treatment plant was the main criteria for the analysis of the efficiency of different renovation alternatives. The effect of the different alternatives on the quality of the receiving waters was investigated with a water quality model and evaluated with different approaches.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3425
Author(s):  
Marco Romei ◽  
Matteo Lucertini ◽  
Enrico Esposito Renzoni ◽  
Elisa Baldrighi ◽  
Federica Grilli ◽  
...  

Combined sewer overflows (CSOs) close to water bodies are a cause of grave environmental concern. In the past few decades, major storm events have become increasingly common in some regions, and the meteorological scenarios predict a further increase in their frequency. Consequently, CSO control and treatment according to best practices, the adoption of innovative treatment solutions and careful sewer system management are urgently needed. A growing number of publications has been addressing the quality, quantity and types of available water management and treatment options. In this study, we describe the construction of an innovative detention reservoir along the Arzilla River (Fano, Italy) whose function is to store diluted CSO wastewater exceeding the capacity of a combined drain system. River water sampling and testing for microbial contamination downstream of the tank after a heavy rain event found a considerable reduction of fecal coliform concentrations, which would have compounded the impact of stormwater on the bathing site. These preliminary results suggest that the detention tank exerted beneficial environmental effects on bathing water by lowering the microbial load.


1997 ◽  
Vol 32 (1) ◽  
pp. 155-168 ◽  
Author(s):  
M. Stirrup ◽  
Z. Vitasovic ◽  
E. Strand

Abstract The Regional Municipality of Hamilton-Wentworth operates and maintains a large combined sewer system in the Great Lakes basin. During dry weather and small storm events, two large interceptor sewers convey all sanitary and storm flows to the Woodward Avenue wastewater treatment plant. Larger rainfall events, specifically high intensity summer thunderstorms, generate flows which exceed the design capacity of the sanitary interceptors and result in combined sewer overflows to Hamilton Harbour and Cootes Paradise, which ultimately discharge to Lake Ontario. The Region is implementing a comprehensive program for reducing the pollution caused by these overflows. This program includes the construction of several off-line detention storage facilities and the implementation of a real-time control system for combined sewer overflow reduction. Real-time control will enable maximum utilization of the storage available within the combined sewer network and help reduce the frequency and volume of combined sewer overflows. New hydrologic and hydraulic simulation models have been specially developed for this project to help identify, test and implement optimal real-time control strategies. This paper discusses some of the more important aspects related to the design and implementation of the Region’s real-time control system, and focuses mainly on the development of these hydrologic and hydraulic simulation models.


2007 ◽  
Vol 33 (3) ◽  
pp. 566 ◽  
Author(s):  
Sandra L. McLellan ◽  
Erika J. Hollis ◽  
Morgan M. Depas ◽  
Meredith Van Dyke ◽  
Josh Harris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document