Treatment of nitrogen and phosphorus in highly concentrated effluent in SBR and SBBR processes

2004 ◽  
Vol 50 (6) ◽  
pp. 269-276 ◽  
Author(s):  
V. Pambrun ◽  
E. Paul ◽  
M. Spérandio

Various sludge treatment processes produced supernatant with high ammonia concentration from 500 to 2,000 mgN/L and generally high phosphate concentration. Conversion of ammonia into nitrite via partial nitrification has proven to be an economic way, reducing oxygen and external COD requirements during the nitrification/denitrification process. Two processes with biomass retention are studied simultaneously: the sequencing batch reactor (SBR) and the sequencing batch biofilm reactor (SBBR). At a temperature of 30°C, the inhibition of nitrite-oxidizing bacteria due to high ammonia concentration has been studied in order to obtain a stable nitrite accumulation. This work has confirmed the effect of pH and dissolved oxygen on nitrite accumulation performance. During a two month starting period, both processes led to nitrite accumulation without nitrate production when pH was maintained above 7.5. From a 500 mgN/L effluent, the performance of the SBR, and the SBBR, reached respectively about 0.95gN-NO2−/gN-NH4+, and 0.4gN-NO2−/gN-NH4+. The SBBR appears to be more stable facing disturbances in dissolved oxygen conditions. Finally, the maximal phosphate removal rates obtained in the SBR reached 90%, and 70% in the SBBR, depending on ammonium accumulation in the reactor. Ammonium phosphate precipitation is likely to occur, as was suggested by crystals observation in the reactor.

1995 ◽  
Vol 32 (12) ◽  
pp. 141-148 ◽  
Author(s):  
Ferhan Çeçen ◽  
Elvan Orak ◽  
Pinar Gökçin

Nitrification characteristics of a high-strength fertilizer wastewater were studied in a batch activated sludge and a continuous-flow biofilm reactor. In a batch activated sludge system one of the most decisive factors was the pH control. The results in terms of ammonium decrease and nitrite build-up were fitted to kinetic models and it was shown that in the absence of inhibitory factors like high free ammonia or nitrous acid build-up the behaviour was similar to that in the case of low-strength wastes. Continuous-flow studies in the biofilm reactor at different loading rates and dissolved oxygen concentrations indicated that such a biofilm reactor could be employed in the treatment of highly nitrogenous fertilizer wastes. Depending on operating conditions such as dissolved oxygen concentration and loading rate an effluent ammonia concentration as low as 4 mg NH4−N/L could be achieved. In the dissolved oxygen ranges of 3.2 mg/L–3.5 mg/L the system reached the maximum removal rate of 0.17 kg NH4−N/m3.d. When the dissolved oxygen was increased to 4.9 mg/L, removal rates as high as 0.41 kg NH4−N/m3.d could be obtained. Also in continuous-flow operation nitrite accumulation reached in some cases a considerable degree depending on the bulk nitrogen and dissolved oxygen concentrations. The nitrite accumulation in the effluent stream varied from 4–180 mg NO2−N/L depending on operational conditions.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 189-193 ◽  
Author(s):  
V. Lazarova ◽  
R. Nogueira ◽  
J. Manem ◽  
L. Melo

The influence of dissolved oxygen concentration in nitrification kinetics was studied in a new biofilm reactor, the circulating bed reactor (CBR). The study was carried out partly at laboratory scale with synthetic water containing inorganic carbon and nitrogen compounds, and partly at pilot scale for secondary and tertiary nitrification of municipal wastewater. The experimental results showed that either the ammonia or the oxygen concentration could be limiting for the nitrification rate. The transition from ammonia to oxygen limiting conditions occurred for an oxygen to ammonia concentration ratio of about 1.5 - 2 gO2/gN-NH4+ for both laboratory- and pilot-scale reactors. The nitrification kinetics of the laboratory-scale reactor was close to a half order function of the oxygen concentration, when oxygen was the rate limiting substrate.


1994 ◽  
Vol 30 (6) ◽  
pp. 303-313 ◽  
Author(s):  
G. Bortone ◽  
F. Malaspina ◽  
L. Stante ◽  
A. Tilche

An Anaerobic/Anoxic Sequencing Batch Reactor (A/A SBR) with separated batch biofilm nitrification was tested for nutrient removal against a five step Anaerobic-anoxic/Oxic SBR (A/O SBR). Piggery wastewater, particularly challenging for its low COD/N ratio, was used as feed. After feeding, the A/A SBR ran under anaerobic conditions for organic carbon sequestering and phosphorus removal. A settling phase was allowed to separate an ammonia-rich supernatant to be nitrified in a external biofilm reactor. The nitrified effluent returned to the A/A SBR where nitrates were removed, being used as final electron acceptors for luxury P-uptake and organic carbon oxidation. A/A SBR showed very good N and P removal capacities with excellent sludge settling properties. On the other hand, organic carbon removal efficiency with nitrate was lower than with oxygen. Batch biofilm nitrification was very effective, with very high nitrification rates. Presence of poly-P bacteria in the A/A SBR sludge was assessed through microscopic observation and from the high cellular poly-phosphate content.


2015 ◽  
Vol 73 (3) ◽  
pp. 535-542 ◽  
Author(s):  
Yangfan Deng ◽  
Xiaoling Zhang ◽  
Ying Miao ◽  
Bo Hu

In this study, a laboratory-scale sequencing biofilm batch reactor (SBBR) was employed to explore a fast start-up of completely autotrophic nitrogen removal over nitrite (CANON) process. Partial nitrification was achieved by controlling free ammonia concentration and operating at above 30 °C; then the reactor was immediately operated with alternating periods of aerobiosis and anaerobiosis to start the anammox process. The CANON process was successfully achieved in less than 50 d, and the total-nitrogen removal efficiency and the nitrogen removal rate were 81% and 0.14 kg-N m−3 d−1 respectively. Afterwards, with the increasing of ammonium loading rate a maximum nitrogen removal rate of 0.39 kg-N m−3 d−1 was achieved on day 94. DNA analysis showed that ‘Candidatus Brocadia’ was the dominant anammox species and Nitrosomonas was the dominant aerobic ammonium-oxidizing bacteria in the CANON reactor. This study revealed that due to shortening the persistent and stable nitrite accumulation period the long start-up time of the CANON process can be significantly reduced.


1983 ◽  
Vol 15 (3-4) ◽  
pp. 219-232 ◽  
Author(s):  
B H Paepcke

A survey was undertaken of the operation and performance of eleven multi-stage activated sludge plants in South Africa designed for biological nitrogen and phosphorus removal. The results indicate that phosphorus removal has been consistently good in only one case, although several other plants have performed very well in recent months. The major factors adversely affecting phosphorus removal are excessive amounts of nitrate and dissolved oxygen in the anaerobic basins. Nitrate is introduced into the anaerobic basin in the return activated sludge when denitrification is incomplete. Incomplete denitrification is due to a disproportionately low amount of carbonaceous matter in the influent wastewater relative to the total nitrogen concentration. The dissolved oxygen is the result of air entrainment at the Archimedes screw return activated sludge pumps, at cascades in the influent and return sludge channels, and by vortices caused by the stirrers. Other factors which have significantly affected plant performance are mechanical problems, inadequate operator training, and insufficient sample analyses on which to base operating decisions. With due recognition paid to these problem areas, the performance of future designs should be much improved.


1991 ◽  
Vol 23 (7-9) ◽  
pp. 1405-1415 ◽  
Author(s):  
Simón González-Martinez ◽  
Peter A. Wilderer

Biological phosphate removal was achieved in a laboratory scale fixed bed biofilm reactor. To create the conditions required to enrich for phosphate accumulating bacteria, the reactor was periodically filled and drained, and the aerator periodically turned on and off (Sequencing Batch Reactor strategy). The reactor performed very effectively, but it took several weeks to reach steady-state. The highest phosphate uptake rates were observed when sequestration of the organic substrates was accomplished at an early stage of the anaerobic process phase, and release of phosphate at the expense of sequestered or stored substrates (endogenous phosphate release) was encouraged. In the range between 15°C to 25°C, the temperature had only minor effects. The biofilm dry weight contained about 5 per cent phosphate.


2002 ◽  
Vol 25 (2) ◽  
pp. 151-157 ◽  
Author(s):  
G. Catapano ◽  
L. De Bartolo

Oxygen is essential for the survival of isolated liver cells and its concentration is known to affect their viability and function. Recent reports have also shown that ammonia is eliminated at a rate depending on its concentration and that high ammonia concentrations may be cytotoxic to rat liver cells. Nonetheless, little quantitative information on the effect of either metabolite on liver cell reaction kinetics is available although important to the design of bioreactors for bioartificial livers (BALs). In this investigation, we characterized the dependence of the rate of oxygen consumption (OCR), ammonia elimination (AER) and urea synthesis (USR) on ammonia concentration at physiological (i.e., 43 and 72 mmHg) and supra-physiological (i.e., 134 mmHg) dissolved oxygen tensions. To this purpose, isolated rat liver cells were cultured in adhesion on collagen in a continuous-flow bioreactor optimised for the kinetic characterisation of liver cell metabolic reactions. Rates of the investigated reactions generally increased with increasing ammonia concentrations. OCR and USR significantly increased with increasing dissolved oxygen tensions, particularly at high ammonia concentrations. The actual dissolved oxygen tension significantly influenced also OCR and USR dependence on ammonia concentration. The best-fit rate equations were used to show that, at the beginning of the treatment with a bioreactor packed with primary liver cells, high ammonia concentration in the blood may cause large hypoxic zones in the bioreactor as a result of its effect on OCR. This suggests that plasma (or blood) detoxification prior to entering the bioreactor might enhance BAL efficacy by preserving a large fraction of the available cell activity for longer times.


2012 ◽  
Vol 60 (2) ◽  
pp. 109-115 ◽  
Author(s):  
Byanka Damian Mizerkowski ◽  
Eunice da Costa Machado ◽  
Nilva Brandini ◽  
Mariana Gallucci Nazario ◽  
Kleber Vieira Bonfim

An environmental assessment of the estuarine waters of Guaratuba bay, Paraná State, Brazil, is provided through the analysis of physical-chemical, biological and hydrographic dynamics. Twelve stations with a bi-monthly frequency (from October/2002 until August/2003) were sampled during spring and neap tides for the determination of pH, Secchi depth, CO2 saturation, dissolved oxygen, chlorophyll, suspended particulate matter and dissolved inorganic nutrients (nitrate, nitrite, ammonium, phosphate and silicate). Based on the evaluation of six parameters (chlorophyll, Secchi depth, CO2 saturation, dissolved inorganic nitrogen and phosphorus and dissolved oxygen), Guaratuba Bay shows a low to medium trophic status, i.e. from meso- to oligotrophic, and a predominant heterotrophic metabolism, meaning that respiration overcomes primary production. Horizontal stratification was observed during the rainy season, while during the dry season the system showed more homogeneous conditions. Inorganic and/or organic matter in Guaratuba Bay seem to be controlled mainly by the seasonality of precipitation and/ also by ebb and flood tidal phase variations.


2014 ◽  
Vol 955-959 ◽  
pp. 3389-3392
Author(s):  
Li Cheng Zhang ◽  
Wei Dang ◽  
Jie Li ◽  
Jun Sui

The intermittent aeration strategy was applied to the sequencing batch biofilm reactor (SBBR) for the enhanced treatment of urban sewage. Ammonia oxidizing bacteria was cultivated by inoculation. After 25 days cultivation shortcut nitrification was successfully achieved and nitrite accumulation rate could be up to 93%. In the start-up phase of shortcut nitrification, intermittent aeration could increase production of nitrite and promote the enrichment of ammonia oxidizing bacteria. It was concluded that temperature could affect nitrite accumulation. When temperature is in 25~35°C, the nitrite accumulation rate could be up to 90%.


Sign in / Sign up

Export Citation Format

Share Document