Using a GIS transfer model to evaluate pollutant loads in the Lake Kinneret watershed, Israel

2006 ◽  
Vol 53 (10) ◽  
pp. 75-82 ◽  
Author(s):  
D. Markel ◽  
F. Somma ◽  
B.M. Evans

Lake Kinneret (Sea of Galilee) is the only large surface water body in Israel, encompassing an area of 167 km2 and supplying some 30% of the country's fresh water. Pollution from anthropogenic sources and water abstraction for domestic and agricultural uses has long been threatening the water quality of the lake. Point-source pollution in the watershed has decreased drastically with the development of wastewater treatment. However, diffuse pollution from agricultural activities is still an unresolved issue. In this paper we present an application of AVGWLF (a GIS-based watershed load model) to the Lake Kinneret watershed. The model allows one to simulate daily stream flows and monthly sediment, nitrogen, and phosphorus loads discharged to the lake from the surrounding watershed. Results from simulations yield a satisfactory correspondence between simulated and measured daily water volume. Partition by source of total phosphorus delivered to the lake in the period of 2000–04 confirms the reduction in point source nutrient contribution due to improvement of wastewater treatment facilities in the area. Future management should focus on reduction of nutrients originating from septic systems (point sources) and pasture and cropland areas (diffuse sources). Results from simulations will enable watershed managers to prioritize effective management alternatives for protecting the water quality in the lake.

Author(s):  
Arvydas Povilaitis

The assessment of the type of human activity in a basin area that may cause an impact on the status of a water body is needed for successful implementation of the EU Water Framework Directive. Lack of necessary information often makes it difficult to perform the task. Therefore, the statistical MESAW model based on export coefficients approach has been used in this study for evaluation of the impact of different sources of nutrients and organic matter on the water quality in the Merkys River in southern Lithuania. The model was tested on the basis of data from 5 water quality monitoring sites with corresponding subbasin data on land use, point sources and atmospheric deposition. Nonlinear regression was used for simultaneous estimation of the export coefficients and retention. The results revealed that the impact of anthropogenic sources accounted for 73% of COD, 56% of BOD, 90% of Ntot and 78% of Ptot loads measured in the Merkys River. Forest and wetlands contribute from 9.5 to 44% to the corresponding load. The retention in the Merkys River, Basin was found to be high for nitrogen and phosphorus and low for organic matter. Santrauka Įgyvendinant vandensaugos uždavinius turi būti įvertintas konkretaus upės baseino vandens taršos lygis ir numatytos priemonės, padėsiančios pasiekti gerą būklę. Kiekvienos upės baseinas yra sudėtinga ekosistema, kurioje susipina gamtiniai ir antropogeniniai veiksniai. Jie veikia kompleksiškai, todėl analizuojant vandens terpėje migruojančias medžiagas sunku įvertinti kiekvieno jų įtaką. Gamtinių ir antropogeninių veiksnių poveikiui biogeninių ir organinių medžiagų srautams bei jų sulaikymui Merkio upės baseine įvertinti buvo pritaikytas statistinis MESAW modelis. Jis pagrįstas emisijos koeficientų nustatymu įvertinant baseino žemėnaudą, taškinius taršos šaltinius ir atmosferines iškritas. Taikant netiesinės regresijos metodus nustatytas skirtingų veiksnių poveikis upės vandens kokybei. Rezultatai parodė, kad antropogeninių šaltinių poveikis sudaro 73 % ir 56 % (pagal ChDSCr ir BDS7 ) bendro pernešamo organinių medžiagų kiekio Merkio upėje. Žmogaus veikla lemia 90 % pernešamo metinio bendrojo azoto ir 78 % bendrojo fosforo kiekio. Miško poveikis biogeninių ir organinių medžiagų srautams sudaro nuo 9,5 % iki 44 %. Bendrojo azoto ir bendrojo fosforo sulaikymas upės baseine siekia 79 % ir 64 %. Organinių junginių sulaikymas mažas – 9,7 % pagal BDS7 ir 42,3 % pagal ChDSCr. Резюме При решении задач по водоохране должна быть учтена степень загрязненности воды каждого конкретного бассейна реки и намечены меры по улучшению его состояния. Бассейн каждой реки является сложной экосистемой, на которую комплексное воздействие оказывают разные природные и антропогенные факторы, определить влияние каждого из которых довольно трудно. Для оценки воздействия природных и антропогенных факторов на потоки биогенных и органических веществ и их задержание в бассейне реки Меркис была применена статистическая модель MESAW, основанная на определении коэффициентов эмиссии. Результаты показали, что воздействие антропогенных источников составляет 73% общeго объемa химического потребления кислородa (XпK), 56% биохимического потребления кислородa (бпK), 90% общeго количества азота и 78% общeго количества фосфора, измеренных в реке. Воздействие лесов и болот на поток биогенных и органических веществ составляет от 9,5% до 44% общeго объемa веществ. Было устaнoвлeнo, что в бассейне реки Meркис задерживается много азота (79%) и фосфора (64%) и мало органического вещества (9.7–42.3%).


Author(s):  
Archis R. Ambulkar

Since the industrial revolution, societies across the globe have observed significant urbanization and population growth. Newer technologies, industries, and manufacturing plants have evolved over the period to develop sophisticated infrastructures and amenities for mankind. To achieve this, communities have utilized and exploited natural resources, resulting in sustained environmental degradation and pollution. Among various adverse ecological effects, nutrient contamination in water is posing serious problems for the water bodies worldwide. Nitrogen and phosphorus are the basic constituents for the growth and reproduction of living organisms and occur naturally in the soil, air, and water. However, human activities are affecting their natural cycles and causing excessive dumping into the surface and groundwater systems. Higher concentrations of nitrogen and phosphorus-based nutrients in water resources lead to eutrophication, reduction in sunlight, lower dissolved oxygen levels, changing rates of plant growth, reproduction patterns, and overall deterioration of water quality. Economically, this pollution can impact the fishing industry, recreational businesses, property values, and tourism. Also, using nutrient-polluted lakes or rivers as potable water sources may result in excess nitrates in drinking water, production of disinfection by-products, and associated health effects. Nutrients contamination in water commonly originates from point and non-point sources. Point sources are the specific discharge locations, like wastewater treatment plants (WWTP), industries, and municipal waste systems; whereas, non-point sources are discrete dischargers, like agricultural lands and storm water runoffs. Compared to non-point sources, point sources are easier to identify, regulate, and treat. WWTPs receive sewage from domestic, business, and industrial settings. With growing pollution concerns, nutrients removal and recovery at treatment plants is gaining significant attention. Newer chemical and biological nutrient removal processes are emerging to treat wastewater. Nitrogen removal mainly involves nitrification-denitrification processes; whereas, phosphorus removal includes biological uptake, chemical precipitation, or filtration. In regards to non-point sources, authorities are encouraging best management practices to control pollution loads to waterways. Governments are opting for novel strategies like source nutrient reduction schemes, bioremediation processes, stringent effluent limits, and nutrient trading programs. Source nutrient reduction strategies such as discouraging or banning use of phosphorus-rich detergents and selective chemicals, industrial pretreatment programs, and stormwater management programs can be effective by reducing nutrient loads to WWTPs. Bioremediation techniques such as riparian areas, natural and constructed wetlands, and treatment ponds can capture nutrients from agricultural lands or sewage treatment plant effluents. Nutrient trading programs allow purchase/sale of equivalent environmental credits between point and non-point nutrient dischargers to manage overall nutrient discharges in watersheds at lower costs. Nutrient pollution impacts are quite evident and documented in many parts of the world. Governments and environmental organizations are undertaking several waterways remediation projects to improve water quality and restore aquatic ecosystems. Shrinking freshwater reserves and rising water demands are compelling communities to make efficient use of the available water resources. With smarter choices and useful strategies, nutrient pollution in the water can be contained to a reasonable extent. As responsible members of the community, it is important for us to understand this key environmental issue as well as to learn the current and future needs to alleviate this problem.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 101-110 ◽  
Author(s):  
W. v. d. Emde ◽  
H. Fleckseder ◽  
N. Matsché ◽  
F. Plahl-Wabnegg ◽  
G. Spatzierer ◽  
...  

Neusiedlersee (in German) / Fertö tó (in Hungarian) is a shallow lake at the Austro-Hungarian border. In the late 1970s, the question arose what to do in order to protect the lake against eutrophication. A preliminary report established the need for point-source control as well as gave first estimates for non-point source inputs. The proposed point-source control was quickly implemented, non-point sources were - among other topics - studied in detail in the period 1982 - 1986. The preliminary work had shown, based on integrated sampling and data from literature, that the aeolic input outweighed the one via water erosion (work was for totP only). In contrast to this, the 1982 - 1986 study showed that (a) water erosion by far dominates over aeolic inputs and (b) the size of nonpoint-source inputs was assessed for the largest catchment area in pronounced detail, whereas additional estimates were undertaken for smaller additional catchment areas. The methods as well as the results are presented in the following. The paper concludes with some remarks on the present management practice of nonpoint-source inputs.


1998 ◽  
Vol 38 (10) ◽  
pp. 165-172 ◽  
Author(s):  
Ruochuan Gu ◽  
Mei Dong

The conventional method for waste load allocations (WLA) employs spatial-differentiation, considering individual point sources, and temporal-integration, using a constant flow, typically 7Q10 low flow. This paper presents a watershed-based seasonal management approach, in which non-point source as well as point sources are incorporated, seasonal design flows are used for water quality analysis, and WLA are performend in a watershed scale. The strategy for surface water quality modeling in the watershed-based approach is described. The concept of seasonal discharge management is discussed and suggested for the watershed-based approach. A case study using the method for the Des Moines River, Iowa, USA is conducted. Modeling considerations and procedure are presented. The significance of non-point source pollutant load and its impact on water quality of the river is evaluated by analyzing field data. A water quality model is selected and validated against field measurements. The model is applied to projections of future water quality situations under different watershed management and water quality control scenarios with respect to river flow and pollutant loading rate.


2021 ◽  
Author(s):  
A H M Enamul Kabir ◽  
Masahiko Sekine ◽  
Tsuyoshi Imai ◽  
Koichi Yamamoto ◽  
Ariyo Kanno ◽  
...  

<p>Freshwater microplastics pollution has been a recent focus. River freshwater microplastics pollution are vital towards freshwater ecosystems as well as have been the prominent source-to-sink conduits to export MPs into the marine realm. Wastewater treatment plants (WWTPs) have been identified as one of the major point-sources. To date, sources-to-sinks comprehensive knowledge are highly limited. This study explored sources-to-sinks microplastics pollution i.e., WWTPs-to-river-to-marine comprehensively. The two rivers i.e., Koya River (KR) and Nishiki River (NR) which are flowing to the Seto Inland Sea (SIS) and the WWTPs effluent samples were collected from selected (n=37) stations in the Yamaguchi prefecture, Japan. Filtration, wet peroxidation, and density separation methods were employed to extract microplastics particles. Polymers were identified via attenuated total reflectance-Fourier transform infrared spectroscopy. The average microplastics abundances were found KR—82.25±67.84 n/L and NR—38.73±24.13 n/L for the river water, and KRWWTPs—79.5±3.5 n/L and NRWWTPs—72.25±23.64 n/L for WWTPs effluents, respectively. The KR were found to be more polluted than the NR. WWTPs effluents were found posing higher abundances than rivers. Significantly higher microplastics concentration were found in the WWTPs downstream stations than other river stations. Characterization revealed that small MPs (<1000 µm) in size, fibers in shape, polymers— polyethylene, polypropylene, polyethylene terephthalate, vinylon were major in both of the WWTPs effluents and rivers. WWTPs influenced river environments by means both of the abundances and microplastics characteristics (shapes-size-polymers). The estimated source-to-sink emission demonstrated a substantial number of MPs discharge into the rivers by the WWTPs (0.007—0.086 billion/day) and rivers-to-SIS marine environments (1.15—7.951 billion/day). The emission represented that the WWTPs were the prominent point-source to cause river microplastics pollution. Rivers were the initial sinks of the Japan land-sourced microplastics and prominent pathways to emit microplastics to the ultimate marine sink i.e., SIS. Large amounts of MPs are being generated on land sources before the plastics wastes degrade into MPs secondarily. The pollution characteristics (shapes-sizes-polymers) indicated ecotoxicological threats to these rivers and the downstream environments. Overall, this study provided an insight of sources-to-sinks pollution, fulfilled the preliminary knowledge gaps of pollution occurring land-sources, fate and loadings. We recommended microplastics pollution control at source. This study will aid in developing microplastics pollution control and management strategies for environmental protection and sustainability in the regional Japan as well as global context upon “thinking globally and acting locally”.</p><p><strong>Keywords: </strong>Abundance, Point-source, Source-to-sink, Riverine microplastics pollution, Wastewater treatment plants</p>


2019 ◽  
Author(s):  
◽  
Seungyub Lee

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Water pollution caused by nutrients, and the resulting eutrophication, have increased over time. This water pollution is increasingly caused by non-point source pollution, both nutrients and erosion. Controlling non-point pollution is important for water quality. However, non-point source pollution is not easy to track and control. In this case, management efforts can be solutions for these environmental issues in both urban and agricultural areas. In this dissertation, I focus on phosphorous (P) fertilizer because P is the limiting nutrient in freshwater systems. If we can reduce P runoff from urban and agricultural non-point sources, water quality can be improved. ... By analyzing national water quality and political economy data and by investigating a national survey of soybean producers, this dissertation found implications to increase adoption of environmentally friendly policies and practices. Solving this problem will require efforts to limit both residential and agricultural nonpoint source pollution. The results could be helpful policy makers to target specific regions to initiate environmental policies and extension efforts for designing educational programs to increase adoption rate as well as environmental quality.


2013 ◽  
Vol 777 ◽  
pp. 420-423
Author(s):  
Chen Xi Mi

Through the analysis on the data of monitoring water quality of typical reservoirs in Liaoning province, the major reservoirs in the province are in the state of mesotrophication or even eutrophication. The main pollutants are DO-consumption organic pollutants such as ammonia nitrogen and phosphorus. Despite years of special treatment, quality indexes about such nutrients are still high and they severely restrict improvement of the water quality. On the basis of the primary research, this article analyses the main reason for production of phosphorus and nitrogen, estimates the annual load of non point sources pollution and provides a basis for controlling of the pollution.


2015 ◽  
Vol 71 (12) ◽  
pp. 1806-1814 ◽  
Author(s):  
X. P. Gao ◽  
G. N. Li ◽  
G. R. Li ◽  
C. Zhang

The Dragon lake diversion channel (DLDC) is the only river that recharges Dragon Lake, an artificial lake in China. This paper examines the main factors influencing water quality by investigating point source and non-point source pollutants along the main route. Based on the complicated system of rivers and desilting basins, a three-dimensional water quality model using environmental fluid dynamics code (EFDC) was developed. The model of DLDC was calibrated and verified using observed data. The error ranges of river water level, total phosphorus, total nitrogen and chemical oxygen demand were within 5%, 10%, 16% and 20%, respectively, all of which meet the precision requirement. The model was employed to predict the concentrations of pollutants in the main stream under current pollution loads within a year and a flood lasting for 24 hours. The results revealed that the main pollution sources that influence the water quality of waterways were the point sources followed by the non-point pollution sources. Water quality improved when large water quantities were delivered and this trend can be described as dilution. The water quality of the Dongfeng main channel meets the requirement; however, the water quality of the Dongfeng River is somewhat poor, and the water quality of the Wei River is seriously contaminated. To address these problems, we suggest that the Dongfeng River and Wei River adopt a culvert under its riverbeds.


2001 ◽  
Vol 44 (6) ◽  
pp. 55-62 ◽  
Author(s):  
A. Droic ◽  
J. Zagorc-Končan ◽  
M. Cotman

The enrichment of groundwater and rivers by nutrients (nitrogen and phosphorus compounds) and their consequences is one of the most severe problems across Europe as well in Slovenia. Transfer of nutrients from different sources into the environment causes eutrophication of surface waters, nitrate accumulation in groundwater, and others. In this paper, the methodology of the material flow analysis is presented and applied to develop a nitrogen balance in a river basin and to evaluate different scenarios for total nitrogen pollution reduction. Application of the methodology is illustrated by means of a case study on the Krka river, Slovenia. Different scenarios are to be considered: the present level of sewerage and treatment capacities, different stages of wastewater treatment and management of agricultural activities on land. The results show that beside effluents from wastewater treatment plants, agriculture contributes significantly to the total annual nitrogen load. Beside reduction of point sources by means of wastewater collection and implementation of nutrient removal technology, managing agricultural nitrogen in order to protect river water quality and drinking water supply should become a major challenge in the Krka river basin.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4408
Author(s):  
Galina Yotova ◽  
Tony Venelinov ◽  
Stefan Tsakovski

Surface water quality strongly depends on anthropogenic activity. Among the main anthropogenic sources of this activity are the wastewater treatment plant (WWTP) effluents. The discharged loads of nutrients and suspended solids could provoke serious problems for receiving water bodies and significantly alter the surface water quality. This study presents inventory analysis and chemometric assessment of WWTP effluents based on the mandatory monitoring data. The comparison between the Bulgarian WWTPs and previously reported data from other countries reveals that discharged loads from investigated WWTPs are lower. This is particularly valid for total suspended solids (TSS). The low TSS loads are the reason for the deviations of the typical calculated WWTP effluent ratios of Bulgarian WWTPs compared to the WWTPs worldwide. The performed multivariate analysis reveals the hidden factors that determine the content of WWTP effluents. The source apportioning based on multivariate curve resolution analysis provides detailed information for source contribution profiles of the investigated WWTP effluent loads and elucidate the difference between WWTPs included in this study.


Sign in / Sign up

Export Citation Format

Share Document