Sensitivity analysis of an urban stormwater microorganism model

2010 ◽  
Vol 62 (6) ◽  
pp. 1393-1400 ◽  
Author(s):  
D. T. McCarthy ◽  
A. Deletic ◽  
V. G. Mitchell ◽  
C. Diaper

This paper presents the sensitivity analysis of a newly developed model which predicts microorganism concentrations in urban stormwater (MOPUS—MicroOrganism Prediction in Urban Stormwater). The analysis used Escherichia coli data collected from four urban catchments in Melbourne, Australia. The MICA program (Model Independent Markov Chain Monte Carlo Analysis), used to conduct this analysis, applies a carefully constructed Markov Chain Monte Carlo procedure, based on the Metropolis-Hastings algorithm, to explore the model's posterior parameter distribution. It was determined that the majority of parameters in the MOPUS model were well defined, with the data from the MCMC procedure indicating that the parameters were largely independent. However, a sporadic correlation found between two parameters indicates that some improvements may be possible in the MOPUS model. This paper identifies the parameters which are the most important during model calibration; it was shown, for example, that parameters associated with the deposition of microorganisms in the catchment were more influential than those related to microorganism survival processes. These findings will help users calibrate the MOPUS model, and will help the model developer to improve the model, with efforts currently being made to reduce the number of model parameters, whilst also reducing the slight interaction identified.

2008 ◽  
Vol 10 (2) ◽  
pp. 153-162 ◽  
Author(s):  
B. G. Ruessink

When a numerical model is to be used as a practical tool, its parameters should preferably be stable and consistent, that is, possess a small uncertainty and be time-invariant. Using data and predictions of alongshore mean currents flowing on a beach as a case study, this paper illustrates how parameter stability and consistency can be assessed using Markov chain Monte Carlo. Within a single calibration run, Markov chain Monte Carlo estimates the parameter posterior probability density function, its mode being the best-fit parameter set. Parameter stability is investigated by stepwise adding new data to a calibration run, while consistency is examined by calibrating the model on different datasets of equal length. The results for the present case study indicate that various tidal cycles with strong (say, >0.5 m/s) currents are required to obtain stable parameter estimates, and that the best-fit model parameters and the underlying posterior distribution are strongly time-varying. This inconsistent parameter behavior may reflect unresolved variability of the processes represented by the parameters, or may represent compensational behavior for temporal violations in specific model assumptions.


2017 ◽  
Vol 14 (18) ◽  
pp. 4295-4314 ◽  
Author(s):  
Dan Lu ◽  
Daniel Ricciuto ◽  
Anthony Walker ◽  
Cosmin Safta ◽  
William Munger

Abstract. Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results in a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. The result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.


2002 ◽  
Vol 6 (5) ◽  
pp. 883-898 ◽  
Author(s):  
K. Engeland ◽  
L. Gottschalk

Abstract. This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC) analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1) process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis


2010 ◽  
Vol 27 (11) ◽  
pp. 114009 ◽  
Author(s):  
V Raymond ◽  
M V van der Sluys ◽  
I Mandel ◽  
V Kalogera ◽  
C Röver ◽  
...  

2016 ◽  
Vol 67 (7) ◽  
pp. 992 ◽  
Author(s):  
Beverly K. Barnett ◽  
William F. Patterson ◽  
Todd Kellison ◽  
Steven B. Garner ◽  
Alan M. Shiller

Otolith chemical signatures were used to estimate the number of likely nursery sources that contributed recruits to a suite of red snapper (Lutjanus campechanus) year-classes sampled in 2012 in US Atlantic Ocean waters from southern Florida (28°N) to North Carolina (34°N). Otoliths from subadult and adult fish (n=139; ages 2–5 years) were cored and their chemical constituents analysed for δ13C, δ18O, as well as the elemental ratios of Ba:Ca, Mg:Ca, Mn:Ca and Sr:Ca. Results from multiple linear regression analyses indicated that there was significant latitudinal variation for δ13C, Ba:Ca, Mg:Ca and Mn:Ca. Therefore, these variables were used to parameterise Markov Chain Monte Carlo (MCMC) models computed to estimate the most likely number of nursery sources to each age class. Results from MCMC models indicated that between two and seven nursery sources were equally plausible among the four age classes examined, but the likely number of nursery sources declined for fish aged 4 and 5 years because of apparent mixing between more northern and more southern signatures. Overall, there is evidence to reject the null hypothesis that a single nursery source contributed recruits among the age classes examined, but increased sample size from a broader geographic range may be required to refine estimates of the likely number of nursery sources.


Sign in / Sign up

Export Citation Format

Share Document