Flood analysis in mixed-urban areas reflecting interactions with the complete water cycle through coupled hydrologic-hydraulic modelling
The potential devastating effects of urban flooding have given high importance to thorough understanding and management of water movement within catchments, and computer modelling tools have found widespread use for this purpose. The state-of-the-art in urban flood modelling is the use of a coupled 1D pipe and 2D overland flow model to simultaneously represent pipe and surface flows. This method has been found to be accurate for highly paved areas, but inappropriate when land hydrology is important. The objectives of this study are to introduce a new urban flood modelling procedure that is able to reflect system interactions with hydrology, verify that the new procedure operates well, and underline the importance of considering the complete water cycle in urban flood analysis. A physically-based and distributed hydrological model was linked to a drainage network model for urban flood analysis, and the essential components and concepts used were described in this study. The procedure was then applied to a catchment previously modelled with the traditional 1D-2D procedure to determine if the new method performs similarly well. Then, results from applying the new method in a mixed-urban area were analyzed to determine how important hydrologic contributions are to flooding in the area.