Low temperature biological phosphorus removal and partial nitrification in a pilot sequencing batch reactor system

2011 ◽  
Vol 63 (12) ◽  
pp. 2802-2807 ◽  
Author(s):  
Qiuyan Yuan ◽  
Jan A. Oleszkiewicz

Partial nitrification and biological phosphorus removal appear to hold promise of a cost-effective and sustainable biological nutrient removal process. Pilot sequencing batch reactors (SBRs) were operated under anaerobic/aerobic configuration for 8 months. It was found that biological phosphorus removal can be achieved in an SBR system, along with the partial nitrification process. Sufficient volatile fatty acids supply was the key for enhanced biological phosphorus removal. This experiment demonstrated that partial nitrification can be achieved even at low temperature with high dissolved oxygen (>3 mg/L) concentration. Shorter solid retention time (SRT) for nitrite oxidizing bacteria (NOB) than for ammonia oxidizing bacteria due to the nitrite substrate limitation at the beginning of the aeration cycle was the reason that caused NOB wash-out. Controlling SRT should be the strategy for an SBR operated in cold climate to achieve partial nitrification. It was also found that the aerobic phosphorus accumulating organisms' P-uptake was more sensitive to nitrite inhibition than the process of anaerobic P-release.

1998 ◽  
Vol 37 (9) ◽  
pp. 219-226 ◽  
Author(s):  
Choi Euiso ◽  
Rhu Daewhan ◽  
Yun Zuwhan ◽  
Lee Euisin

The wastewater characteristics of low organic strength coupled with low temperature would be considerable variables for design and operation of biological nutrient removal (BNR) systems. But temperature studies have mostly been focused on individual process with biological phosphorus removal, nitrification and denitrification, respectively. Overall temperature effects on BNR system may not be fully represented by sum of results of separated studies on biological nutrient removal steps. The operating result of a retrofitted full scale unit along with laboratory-scale BNR unit indicated 90% of nitrification was possible at temperature as low as 8°C. However, the denitrification was turned out to be a key step to regulate the overall nutrient removal efficiencies. When the operating temperature dropped down, a rapid decrease of phosphorus removal efficiencies was observed by the nitrate in return sludge. If nitrification was not well developed, phosphorus removal returned to the normal efficiency even at low temperature of 5°C. The phosphorus removal mechanism was not influenced at this low temperature.


2012 ◽  
Vol 65 (7) ◽  
pp. 1318-1322 ◽  
Author(s):  
J. Barnard ◽  
D. Houweling ◽  
H. Analla ◽  
M. Steichen

While the mechanism of biological phosphorus removal (BPR) and the need for volatile fatty acids (VFA) have been well researched and documented to the point where it is now possible to design a plant with a very reliable phosphorus removal process using formal flow sheets, BPR is still observed in a number of plants that have no designated anaerobic zone, which was considered essential for phosphorus removal. Some examples are given in this paper. A theory is proposed and then applied to solve problems with a shortage of VFA in the influent of the Henderson NV plant. Mixed liquor was fermented in the anaerobic zone, which resulted in phosphorus removal to very low levels. This paper will discuss some of the background, and some case histories and applications, and present a simple postulation as to the mechanism and efforts at modelling the results.


1983 ◽  
Vol 15 (3-4) ◽  
pp. 233-259 ◽  
Author(s):  
A R Pitman ◽  
S L V Venter ◽  
H A Nicholls

This paper describes three years operating experience with two full-scale biological nutrient removal activated sludge plants. Factors affecting biological phosphorus removal are highlighted and possible process improvements suggested.


1984 ◽  
Vol 16 (10-11) ◽  
pp. 173-185 ◽  
Author(s):  
D Malnou ◽  
M Meganck ◽  
G M Faup ◽  
M du Rostu

The biological phosphorus removal phenomenon has been studied in a modified “Phoredox” type pilot plant. The interpretation of the results obtained was facilitated by batch tests on the sludge. The influence of the duration of anaerobiosis, the presence of nitrates and various organic substances in the anaerobic zone were thus studied successively. The results obtained tend to confirm the hypothesis that biological phosphorus removal is due primarily to the bacterial strain Acinetobacter. Microbiological examination of the sludge has revealed the presence of these bacteria and that of acidogenic bacteria producing volatile fatty acids promoting the growth of Acinetobacter. Pure culture tests have confirmed the possibility of a greater phosphorus storage capability of Acinetobacter.


2010 ◽  
Vol 61 (7) ◽  
pp. 1793-1800 ◽  
Author(s):  
Dwight Houweling ◽  
Yves Comeau ◽  
Imre Takács ◽  
Peter Dold

The overall potential for enhanced biological phosphorus removal (EBPR) in the activated sludge process is constrained by the availability of volatile fatty acids (VFAs). The efficiency with which polyphosphate accumulating organisms (PAOs) use these VFAs for P-removal, however, is determined by the stoichiometric ratios governing their anaerobic and aerobic metabolism. While changes in anaerobic stoichiometry due to environmental conditions do affect EBPR performance to a certain degree, model-based analyses indicate that variability in aerobic stoichiometry has the greatest impact. Long-term deterioration in EBPR performance in an experimental SBR system undergoing P-limitation can be predicted as the consequence of competition between PAOs and GAOs. However, the observed rapid decrease in P-release after the change in feed composition is not consistent with a gradual shift in population.


2006 ◽  
Vol 53 (9) ◽  
pp. 169-175 ◽  
Author(s):  
K. Hamada ◽  
T. Kuba ◽  
V. Torrico ◽  
M. Okazaki ◽  
T. Kusuda

A shortage of organic substances (COD) may cause problems for biological nutrient removal, that is, lower influent COD concentration leads to lower nutrient removal rates. Biological phosphorus removal and denitrification are reactions in which COD is indispensable. As for biological simultaneous nitrogen and phosphorus removal systems, a competition problem of COD utilisation between polyphosphate accumulating organisms (PAOs) and non-polyphosphate-accumulating denitrifiers is not avoided. From the viewpoint of effective utilisation of limited influent COD, denitrifying phosphorus-removing organisms (DN-PAOs) can be effective. In this study, DN-PAOs activities in modified UCT (pre-denitrification process) and DEPHANOX (post-denitrification ptocess) wastewater treatments were compared. In conclusion, the post-denitrification systems can use influent COD more effectively and have higher nutrient removal efficiencies than the conventional pre-denitrification systems.


1997 ◽  
Vol 36 (12) ◽  
pp. 55-60 ◽  
Author(s):  
S. W. Oa ◽  
E. Choi

Phosphorus removal characteristics are rather complicated in a highly nitrogenous waste like nightsoil under treatment with SBR (sequencing batch reactor). It was found that the increased pH due to denitrification in anaerobic period stimulated chemical precipitation of phosphorus as struvite and hydroxyapatite, and the depressed pH due to nitrification in the aerobic period dissolved the previously formed precipitates. Phosphate accumulating organisms (PAO) worked as in the ordinary BNR (biological nutrient removal) systems regardless of the chemical reactions, but the chemical reactions masked the biological phosphorus release and uptake reactions. About 36% of phosphorus applied was removed biologically in polyphosphate granules. P-fractionation of sludges confirmed this phenomenon. Biological phosphorus removal could be increased with the increased anaerobic period. The morphological types of phosphorus precipitates were examined by SEM in combination with x-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document