Performance of a system with full- and pilot-scale sludge drying reed bed units treating septic tank sludge in Brazil

2015 ◽  
Vol 71 (12) ◽  
pp. 1751-1759 ◽  
Author(s):  
Luisa Fernanda Calderón-Vallejo ◽  
Cynthia Franco Andrade ◽  
Elias Sete Manjate ◽  
Carlos Arturo Madera-Parra ◽  
Marcos von Sperling

This study investigated the performance of sludge drying reed beds (SDRB) at full- and pilot-scale treating sludge from septic tanks in the city of Belo Horizonte, Brazil. The treatment units, planted with Cynodon spp., were based on an adaptation of the first-stage of the French vertical-flow constructed wetland, originally developed for treating sewage. Two different operational phases were investigated; in the first one, the full-scale unit was used together with six pilot-scale columns in order to test different feeding strategies. For the second phase, only the full-scale unit was used, including a recirculation of the filtered effluent (percolate) to one of the units of the French vertical wetland. Sludge application was done once a week emptying a full truck, during 25 weeks. The sludge was predominantly diluted, leading to low solids loading rates (median values of 18 kgTS m−2year−1). Chemical oxygen demand removal efficiency in the full-scale unit was reasonable (median of 71%), but the total solids removal was only moderate (median of 44%) in the full-scale unit without recirculation. Recirculation did not bring substantial improvements in the overall performance. The other loading conditions implemented in the pilot columns also did not show statistically different performances.

2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


Author(s):  
Maria Cristina Collivignarelli ◽  
Marco Carnevale Miino ◽  
Franco Hernan Gomez ◽  
Vincenzo Torretta ◽  
Elena Cristina Rada ◽  
...  

In the coming years, water stress is destined to worsen considering that the consumption of water is expected to increase significantly, and climate change is expected to become more evident. Greywater (GW) has been studied as an alternative water source in arid and semiarid zones. Although there is no single optimal solution in order to treat GW, constructed wetlands proved to be effective. In this paper, the results of the treatment of a real GW by a horizontal flow constructed wetland (HFCW) for more than four months are shown. In the preliminary laboratory-scale plant, Phragmites australis, Carex oshimensis and Cyperus papyrus were tested separately and showed very similar results. In the second phase, pilot-scale tests were conducted to confirm the performance at a larger scale and evaluate the influence of hydraulic retention time, obtaining very high removal yields on turbidity (>92%), total suspended solids (TSS) (>85%), chemical oxygen demand (COD) (>89%), and five-day biological oxygen demand (BOD5) (>88%). Based on the results of the pilot-scale HFCW, a comparison with international recommendations by World Health Organization and European Union is discussed.


2015 ◽  
Vol 10 (2) ◽  
pp. 371-380
Author(s):  
R. Dellbrügge ◽  
K. Bauerfeld ◽  
N. Dichtl ◽  
A. Großer ◽  
S. Paris

Drying sewage sludge is a major aspect of biosolids management. Several investigations were performed in a pilot-scale solar dryer for the subsequent development of design rules for solar dryers. The pilot dryer was operated outside simultaneously with a full-scale dryer and, later, in a building. Total solids in the sludge and climate data were analyzed and logged regularly during drying. The fecal coliform and ammonium content was measured as well. Operation next to the full-scale plant was intended to enable comparison of their evaporation rates. The pilot plant was operated in a building in order to assess the influence of external heat input on the drying process. The results showed constant drying progress and that drying was feasible. Although differences in evaporation rates arising from operation, aeration and scaling existed, evaporation rates comparable to full-scale dryers were observed. Under floor heating improved evaporation rates by 25%. More than 50% of total Kjeldahl nitrogen was degraded, and this could be detected as NH3 in the discharged air. Reduction in fecal coliforms could be achieved without reaching secure disinfection, as required by USEPA standard 503 (USEPA 2007).


2015 ◽  
Vol 768 ◽  
pp. 515-519
Author(s):  
Xin Nan Deng ◽  
Yu Bo Cui ◽  
Wei Gao ◽  
Rui Chen

Sludge moisture content was investigated at different stages during the test. Pilot-scale sludge drying bed and sludge drying reed beds had the same size of 3 m×1 m×1.3 m, and the bed height consisted of a 65 cm media layer and a 65 cm extra height. The media layer is filled with slag (20 cm), gravel (20 cm), coarse sand (5 cm) and quartz sand (24.5 cm) from the bottom in turn. Unit 1 was a conventional sludge drying bed, unit 2 was a sludge drying reed bed. Unit 1 and unit 2 had ventilation pipes which were mounted on the drainage pipes. Unit 3 was a sludge drying reed bed without ventilation pipe. The waste activated sludge was feed into the three units periodically during the experiment. The experiment investigated the sludge moisture content. At the end of the operation, the sludge moisture content in three units decreased by 18.52%, 22.37%, and 20.68%, respectively. It was found that the dewatering effect of the sludge drying reed bed was better than the conventional drying bed. The effect of plant growth on sludge dewatering is greater than the ventilation, but the difference was not significant.


2020 ◽  
pp. 74-83
Author(s):  
Tatchai Pussayanavina ◽  
Thammarat Koottatep ◽  
Le My Dinh ◽  
Sopida Khamyai ◽  
Wattanapong Sangchun ◽  
...  

Demonstrating the operational feasibility of a solar-powered septic tank as an alternative and sustainable sanitation option for communities was presented in this study. The efficiency and technical feasibility of a solar septic tank (SST) were tested and evaluated in pilot scale for treatment of black water from communal toilets. The system consisted of a modified septic tank equipped with a disinfection chamber inside the tank. Solar radiation was collected as a heat source for heating and disinfection. The system could achieve high removal efficiencies of total chemical oxygen demand (TCOD), 5-day biological oxygen demand (BOD5), total solid (TS), and total volatile solid (TVS) of 97%, 94%, 91% and 96%, respectively. The inactivation efficiencies of E. coli and total coliforms in the SST were about 2.2 log reduction. The increased temperature inside the septic tank could help to inactivate pathogens and reduce the environmental issues related to conventional fecal sludge management. In turn, this improved the water quality of groundwater and surface water and minimize health risks. Influence of operational conditions including organic/nutrient loading rate and ratio between TCOD and TKN in the black water on the performance of the SST were discussed.


1997 ◽  
Vol 35 (5) ◽  
pp. 223-230 ◽  
Author(s):  
Monika Schönerklee ◽  
Ferdinand Koch ◽  
Reinhard Perfler ◽  
Raimund Haberl ◽  
Johannes Laber

In Strengberg, Lower Austria, a vertical flow reed bed system (gravel/sand) was chosen as a new type of tertiary treatment which was designed as a full scale pilot plant with various possibilities of operational use. The surface of the vertical flow pilot plant amounts to about 600 m2 and is divided into four beds whereby two different depths of substrate are used. The application of the conventional plant effluent is carried out in intermittent flushes and at changeable time intervals. Final nitrification and partial denitrification and elimination of phosphorus are the main goals to be achieved. In the framework of the present research project the load limits will be determined by gradually raising the influent load. The efficiency and operational reliability within the whole year period (summer/winter) are considered to be an important factor for establishing general dimensioning approaches. The pilot plant has been in operation for more than one year now. Different operational stages up to a hydraulic load of 1.3 m2.p.e.−1 (i.e. 0.75 m2.p.e.−1) were carried out. The average chemical oxygen demand (COD) of the reed bed effluents varied from 1 to 20 mg.1−1. Not surprisingly the ammonium (NH4-N) results showed more variation. Results, thus far, indicate NH4-N removal efficiencies between 40% and 90%.


1990 ◽  
Vol 22 (9) ◽  
pp. 255-263
Author(s):  
I. Ozturk ◽  
V. Eroglu ◽  
I. Toröz

In this paper, biological treatability study results of a pilot-scale aerated lagoon treating white-waters from a mechanical groundwood-based pulp and paper mill, and long-term operating experiences on two full-scale aerated lagoon systems are presented. Biological treatability study was conducted in a 200 1 semi-pilot aerated lagoon. The results have shown that five-day Biochemical Oxygen Demand (BOD5) values are less than 50 mg/l for a hydraulic retention time of 5 days. BOD removal rate constant (K) was found as 1.01 per day for 20°C. Bioassay tests were also conducted to evaluate the toxic impacts of white-waters on receiving waters and 96 hours median tolerance level TL(96), was found as 84% for species Lapistes reticularis. Long-term operating results from two full-scale wastewater treatment plants for paper mill effluents are also presented.


2015 ◽  
Vol 6 (1) ◽  
pp. 188-194 ◽  
Author(s):  
H. G. Yang ◽  
J. Li ◽  
J. Liu ◽  
L. B. Ding ◽  
T. Chen ◽  
...  

A pilot-scale sequencing batch reactor (SBR) treating 120 m3/d of a town's wastewater was set up in 2009 and aerobic granules with a mean diameter of 0.28 mm, mixed liquor suspended solids (MLSS) of 7,500 mg/L and sludge volume index (SVI)30 of 43 mL/g were achieved. A full-scale SBR with 50,000 m3/d for treating a town's wastewater was operated in 2010 and aerobic granules with a mean MLSS of 2,285 mg/L and SVI30 of 52.5 mL/g were obtained. Aerobic granules had excellent performances of chemical oxygen demand (COD) and NH4+-N removal and remained stable for a long time. Raw wastewater and SBR operating mode had a positive effect on aerobic granule formation. Therefore, aerobic granular technology could be successfully applied in the full-scale bioreactor under specific conditions. Future development of aerobic granular technology is the application in full-scale continuous-flow reactors.


1995 ◽  
Vol 117 (1) ◽  
pp. 18-23 ◽  
Author(s):  
E. J. Anthony ◽  
G. G. Ross ◽  
E. E. Berry ◽  
R. T. Hemings ◽  
R. K. Kissel

The characterization of solid wastes from full-scale circulating fluidized bed combustors (CFBC) is necessary to ensure that disposal procedures or utilization strategies for the waste solids are successful. Pilot plants are extremely useful in providing hydrodynamic heat and mass transfer data that can be used to design and predict the performance of larger units. Combustion studies indicate that data from pilot-scale units can be used to approximate the behavior of a full-scale plant for different fuels and operating conditions, even when the pilot plant is not designed to properly scale the commercial unit. However, the same does not seem to be true for the determination of reduced sulphur, the other is species and geotechnical or physical properties of the solid wastes generated from pilot plants. The results of analyses of samples generated from two units are discussed. One is a 150 by 150 mm square, 7.3 m high pilot-scale CFBC located at the University of British Columbia and 22 MWe CFBC located at Chatham, New Brunswick. This unit is operated by the New Brunswick Electric Power Commission (NBEPC). Both used the same New Brunswick coal containing 7 percent sulphur. The data presented indicate that the pilot-scale unit can significantly overpredict the formation of sulphides, and compared with the full-scale unit, produces residues with much less promise for either disposal or utilization in low-strength concretes. The results strongly suggest that further work is necessary to understand better the phenomena that produce sulphides and affect the geotechnical properties of wastes.


1988 ◽  
Vol 15 (4) ◽  
pp. 709-716 ◽  
Author(s):  
K. R. Johnson ◽  
J. W. Atwater

The guidelines for the use of the septic tank – soil absorption system (ST–SAS) in the Province of British Columbia are very specific in regard to the separation distance between the ground surface and the groundwater table (minimum 1.2 m), and between the tile field and perimeter drains or ditches (minimum 3.0 m). A pilot-scale experiment employing waterproof channels filled with a saturated soil was used to evaluate the scientific basis for these guidelines. Septic tank effluent was applied to unsaturated columns and the inlet end of the channels and samples were taken at different points in the channels. Measurements were made of total and fecal coliforms, chemical oxygen demand, ammonia, nitrate, and orthophosphate. Coliform reductions within the channels were at least 30 000-fold with total coliform numbers generally lying below 200 coliforms/100 mL and fecal coliforms generally less than 50 coliforms/100 mL. Varying degrees of nitrification occurred in the unsaturated columns, resulting in relatively high concentrations of nitrate in some of the channel sections (1–7 mg/L in channels filled with sand and 0.1–1.0 mg/L in channels filled with loamy sand). The removal of orthophosphate was greater than 90% in all of the channel sections, independent of the saturated or unsaturated zones. Reductions in measured influent parameters were substantial in all of the channels. This suggests that the guidelines may be conservative with respect to these particular soils. Of concern are the high nitrate values observed in some of the channels, therefore consideration of nitrification potential should be made in conjunction with the potential for reduction of other contaminants. Key words: septic tank, soil absorption system, saturated soil, unsaturated soil, coliforms, nutrients.


Sign in / Sign up

Export Citation Format

Share Document