Melting of ice in a porous medium saturated with ice and gas while injecting warm water

2019 ◽  
Vol 13 (4) ◽  
pp. 112-117 ◽  
Author(s):  
V.Sh. Shagapov ◽  
M.N. Zapivakhina

The numerical models for the injection of warm water (in the temperature range from 300 to 340 K) into a cold porous formation are considered. Simplified models describing the processes of heat and mass transfer are proposed. The influence of the parameters determining the initial state of the porous medium, the boundary pressure, temperature and moisture content on the rate of propagation of hydrodynamic and temperature fields in the porous medium is investigated. It has been established that it is economically feasible to melt frozen soils saturated with ice and gas (air) at a sufficiently low temperature of the injected water (about 300 K).

Solid Earth ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 1409-1428 ◽  
Author(s):  
Massimiliano Tirone

Abstract. Chemical equilibration between two different assemblages (peridotite type and gabbro–eclogite type) has been determined using basic thermodynamic principles and certain constraints and assumptions regarding mass and reaction exchange. When the whole system (defined by the sum of the two subsystems) is in chemical equilibrium the two assemblages will not be homogenized, but they will preserve distinctive chemical and mineralogical differences. Furthermore, the mass transfer between the two subsystems defines two petrological assemblages that separately are also in local thermodynamic equilibrium. In addition, when two assemblages previously equilibrated as a whole in a certain initial mass ratio are held together assuming a different proportion, no mass transfer occurs and the two subsystems remain unmodified. By modeling the chemical equilibration results of several systems of variable initial size and different initial composition it is possible to provide a quantitative framework to determine the chemical and petrological evolution of two assemblages from an initial state, in which the two are separately in chemical equilibrium, to a state of equilibration of the whole system. Assuming that the local Gibbs energy variation follows a simple transport model with an energy source at the interface, a complete petrological description of the two systems can be determined over time and space. Since there are no data to constrain the kinetics of the processes involved, the temporal and spatial scale is arbitrary. The evolution model should be considered only a semiempirical tool that shows how the initial assemblages evolve while preserving distinct chemical and petrological features. Nevertheless, despite the necessary simplification, a 1-D model illustrates how chemical equilibration is controlled by the size of the two subsystems. By increasing the initial size of the first assemblage (peridotite like), the compositional differences between the initial and the final equilibrated stage become smaller, while on the eclogite-type side the differences tend to be larger. A simplified 2-D dynamic model in which one of the two subsystems is allowed to move with a prescribed velocity shows that after an initial transient state, the moving subsystem tends to preserve its original composition defined at the influx side. The composition of the static subsystem instead progressively diverges from the composition defining the starting assemblage. The observation appears to be consistent for various initial proportions of the two assemblages, which somehow simplify the development of potential tools for predicting the chemical equilibration process from real data and geodynamic applications. Four animation files and the data files of three 1-D and two 2-D numerical models are available following the instructions in the Supplement.


2008 ◽  
Vol 6 ◽  
pp. 75-81
Author(s):  
D.Ye. Igoshin

The plano-one-dimensional problem of heat and mass transfer is considered when a porous semi-infinite material layer dries. At the boundary, which is permeable for the gas-vapor mixture, the temperature and composition of the gas are kept constant. Self-similar solutions are set describing the propagation of the temperature field and the moisture content field arising when heat is supplied. The intensity of dry flows is studied, depending on the initial state of the wet-porous medium, as well as the temperature and concentration composition of the vapor-gas mixture at the boundary of the porous medium.


2018 ◽  
Author(s):  
Massimiliano Tirone

Abstract. Chemical equilibration between two different assemblages (peridotite-type and gabbro/eclogite-type) of variable initial size assuming few different initial compositions has been determined using certain mass and reactions constraints and thermodynamic principles. The pattern that emerges suggests that mass transfer between the two sub-systems defines two petrological assemblages that separately are maintained in local thermodynamic equilibrium. In addition, when two assemblages previously equilibrated together in a certain mass ratio are rearranged assuming a different initial ratio, no mass transfer occurs and the two sub-systems remain unmodified. By modeling the chemical equilibration results of several systems it is possible to provide a quantitative framework to determine the chemical and petrological evolution of two assemblages from an initial state, in which the two are separately in chemical equilibrium, to a state of equilibration of the whole system (sum of the two sub-systems). Assuming that the local Gibbs energy variation follows a simple diffusion couple model, a complete petrological description of the two systems can be determined over time and space. Since there are no data to constrain the kinetic of the processes involved, the temporal and spatial scale is arbitrary. Nevertheless a 1-D static model shows how chemical equilibration is controlled by the size of the two sub-systems. As the initial size of the first assemblage (peridotite-like) increases, the differences between the initial and the final equilibrated stage becomes smaller, while on the opposite side the difference increases. A simplified 2-D dynamic model in which either one of the two sub-systems is allowed to move with a prescribed velocity, shows that after an initial transient state, the moving sub-system tends to preserve its original composition defined at the entry side. The other sub-system instead evolves towards a large compositional difference from the starting assemblage. The results appear to be the same varying the initial proportion of the two assemblages, which simplify somehow the development of potential tools for predicting the chemical equilibration process from real data and geodynamic applications. Four animations and data sets of three 1-D and two 2-D numerical models are available following the instructions in the supplementary material.


2009 ◽  
Vol 36 (6) ◽  
pp. 524-537 ◽  
Author(s):  
P. A. Lakshmi Narayana ◽  
P. V. S. N. Murthy ◽  
P. V. S. S. S. R. Krishna ◽  
Adrian Postelnicu

2012 ◽  
Vol 9 (1) ◽  
pp. 91-93
Author(s):  
U.R. Ilyasov ◽  
A.V. Dolgushev

The problem of volumetric thermal action on a moist porous medium is considered. Numerical solution, the influence of fluid mobility on the dynamics of the heat and mass transfer process is analyzed. It is established that fluid mobility leads to a softer drying regime. It is shown that in low-permeability media, the fluid can be assumed to be stationary.


Sign in / Sign up

Export Citation Format

Share Document