THE PROBLEM OF THE COMBINED USE OF FILTRATION THEORY AND MACHINE LEARNING ELEMENTS FOR SOLVING THE INVERSE PROBLEM OF RESTORING THE HYDRAULIC CONDUCTIVITY OF AN OIL FIELD

Author(s):  
Vitaly P. KOSYAKOV ◽  
Dmitry Yu. LEGOSTAEV ◽  
Emil N. Musakaev

This article presents the methodology involving the combined use of machine learning elements and a physically meaningful filtration model. The authors propose using a network of radial basis functions for solving the problem of restoring hydraulic conductivity in the interwell space for an oil field. The advantage of the proposed approach in comparison with classical interpolation methods as applied to the problems of reconstructing the filtration-capacitive properties of the interwell space is shown. The paper considers an algorithm for the interaction of machine learning methods, a filtration model, a mechanism for separating input data, a form of a general objective function, which includes physical and expert constraints. The research was carried out on the example of a symmetrical element of an oil field. The proposed procedure for finding a solution includes solving a direct and an adjoint problem.

2021 ◽  
Vol 19 (3) ◽  
pp. 85-109
Author(s):  
Jingying Lin ◽  
Caio Almeida

Pricing American options accurately is of great theoretical and practical importance. We propose using machine learning methods, including support vector regression and classification and regression trees. These more advanced techniques extend the traditional Longstaff-Schwartz approach, replacing the OLS regression step in the Monte Carlo simulation. We apply our approach to both simulated data and market data from the S&P 500 Index option market in 2019. Our results suggest that support vector regression can be an alternative to the existing OLS-based pricing method, requiring fewer simulations and reducing the vulnerability to misspecification of basis functions.


2021 ◽  
Author(s):  
Sergey Igorevich Gusev ◽  
Elena Sergeyevna Kolbikova ◽  
Olga Igorevna Malinovskaya ◽  
Azat Fanisovich Garaev ◽  
Robert Kamilevich Valiev

Abstract The Kharyaginskoye oil field is located on the territory of the Nenets Autonomous District and belongs to the Timan-Pechora Basin oil and gas province. The main object of development is a Devonian age carbonate reservoir. The productive zones of the studied object are mainly confined to thin bed low-porosity reservoirs with a complex structure of void space. The high heterogeneity of deposits laterally and the presence of different levels of oil-water contact (OWC) in the marginal isolated zones necessitate a more accurate assessment of the oil-saturated effective thicknesses. The increase in the reliability of the interpretation was achieved by the joint analysis of borehole and seismic studies using Machine Learning methods. At the stage of configuring the facies model based on well logs and core data, a Multi-Resolution Graph-based Clustering MRGC was used, which provides effective integration of geological and geophysical information. The multi-dimensional dot-pattern recognition method based on k-Nearest neighbors algorithm (k-NN), and by combining various criteria, it allows solving the problem of non-linearity of the relationships between logging responses and the corresponding lithology. The algorithm of the democratic association of neural networks DNNA was used to propagate electrofacies in the inter-well space. The method optimizes the use of seismic data before summation and after summation together with well data through a controlled process that provides a calibrated and scaled distribution of facies. The most probable facies distribution can be used directly as a property in reservoir modeling or as a constraint for modeling. It is known that there is no direct connection between a certain type of wave pattern and the lithological composition of rocks, therefore, the analysis of changing reflection characteristics is performed in conjunction with geophysical data, such as well logging. In addition, a priori geological information about the work area is involved. An important condition for the effective application of facies analysis is the presence of representative core material and the availability of high-quality well information. At the first stage of the work, the lithotyping of carbonate deposits was performed according to the macro description of the core, based on the classification of limestones according to R. H. Dunham. Then, using the multidimensional statistical recognition algorithm MRGC, the relationships between the selected lithotypes and logging responses were obtained. As a result of the tuning, a cluster model was obtained that allows us to distinguish electrofacies characterized by an increased filtration and capacitance potential. At the second stage, the obtained electrofacies, considering the nature of saturation, were used to train cubes of seismic attributes and calculate the cubes of lithofacies and the probability of the existence of each lithofacies. The key point in the distribution was the use of electrofacies obtained in wells belonging to different facies zones. Thus, the joint analysis of all available borehole and seismic information by machine learning methods made it possible to make a forecast lithofacies considering the type of saturation based on geological and geophysical information analysis. The effectiveness of the presented technologies was demonstrated by analyzing the properties of low-permeable carbonate reservoirs, where classical attributes and inversion demonstrate limitations in describing a heterogeneous saturation model. The use of neural network approaches allows to configure complex nonlinear dependencies that are not available to classical methods. The use of a small volume of multi-scale geological and geophysical information using Machine Learning algorithms in the field of field-geophysical and seismic interpretation makes it possible to increase the reliability of interpretation and clarify the location of prospective zones with improved reservoir properties on the studied area, as well as to minimize geological risks during subsequent well placement.


2020 ◽  
Author(s):  
Shreya Reddy ◽  
Lisa Ewen ◽  
Pankti Patel ◽  
Prerak Patel ◽  
Ankit Kundal ◽  
...  

<p>As bots become more prevalent and smarter in the modern age of the internet, it becomes ever more important that they be identified and removed. Recent research has dictated that machine learning methods are accurate and the gold standard of bot identification on social media. Unfortunately, machine learning models do not come without their negative aspects such as lengthy training times, difficult feature selection, and overwhelming pre-processing tasks. To overcome these difficulties, we are proposing a blockchain framework for bot identification. At the current time, it is unknown how this method will perform, but it serves to prove the existence of an overwhelming gap of research under this area.<i></i></p>


Sign in / Sign up

Export Citation Format

Share Document