scholarly journals A review of nuclear data needs and their status for fusion reactor technology with some suggestions on a strategy to satisfy the requirements

1991 ◽  
Author(s):  
D.L. Smith ◽  
E.T. Cheng
1997 ◽  
Vol 37 (1) ◽  
pp. 1-7 ◽  
Author(s):  
F.M. Mann ◽  
E.T. Cheng ◽  
O. Wasson ◽  
M.B. Chadwick ◽  
P.G. Young ◽  
...  

1996 ◽  
Vol 30 (3P2B) ◽  
pp. 1182-1189 ◽  
Author(s):  
E.T. Cheng ◽  
A.B. Pashchenko ◽  
J. Kopecky

2021 ◽  
Vol 11 (11) ◽  
pp. 5234
Author(s):  
Jin Hun Park ◽  
Pavel Pereslavtsev ◽  
Alexandre Konobeev ◽  
Christian Wegmann

For the stable and self-sufficient functioning of the DEMO fusion reactor, one of the most important parameters that must be demonstrated is the Tritium Breeding Ratio (TBR). The reliable assessment of the TBR with safety margins is a matter of fusion reactor viability. The uncertainty of the TBR in the neutronic simulations includes many different aspects such as the uncertainty due to the simplification of the geometry models used, the uncertainty of the reactor layout and the uncertainty introduced due to neutronic calculations. The last one can be reduced by applying high fidelity Monte Carlo simulations for TBR estimations. Nevertheless, these calculations have inherent statistical errors controlled by the number of neutron histories, straightforward for a quantity such as that of TBR underlying errors due to nuclear data uncertainties. In fact, every evaluated nuclear data file involved in the MCNP calculations can be replaced with the set of the random data files representing the particular deviation of the nuclear model parameters, each of them being correct and valid for applications. To account for the uncertainty of the nuclear model parameters introduced in the evaluated data file, a total Monte Carlo (TMC) method can be used to analyze the uncertainty of TBR owing to the nuclear data used for calculations. To this end, two 3D fully heterogeneous geometry models of the helium cooled pebble bed (HCPB) and water cooled lithium lead (WCLL) European DEMOs were utilized for the calculations of the TBR. The TMC calculations were performed, making use of the TENDL-2017 nuclear data library random files with high enough statistics providing a well-resolved Gaussian distribution of the TBR value. The assessment was done for the estimation of the TBR uncertainty due to the nuclear data for entire material compositions and for separate materials: structural, breeder and neutron multipliers. The overall TBR uncertainty for the nuclear data was estimated to be 3~4% for the HCPB and WCLL DEMOs, respectively.


2020 ◽  
Vol 239 ◽  
pp. 23001
Author(s):  
Javier Praena ◽  
Francisco Garcia-Infantes ◽  
Rafael Rivera ◽  
Laura Fernandez-Maza ◽  
Fernando Arias de Saavedra ◽  
...  

The International Fusion Materials Irradiation Facility - Demo Oriented NEutron Source (IFMIF-DONES) is a single-sited novel Research Infrastructure for testing, validation and qualification of the materials to be used in a fusion reactor. Recently, IFMIF-DONES has been declared of interest by ESFRI (European Strategy Forum on Research Infrastructures) and its European host city would be Granada (Spain). In spite the first and most important application of IFMIF-DONES related to fusion technology, the unprecedented neutron flux available could be exploited without modifying the routine operation of IFMIF-DONES. Thus, it is already planned an experimental hall for a complementary program with neutrons. Also, a complementary program on the use of the deuteron beam could help IFMIF-DONES to be more sustainable. In the present work, we study radioisotope production with deuterons of 177Lu. The results show the viability of IFMIF-DONES for such production in terms of the needs of a territory of small-medium size. Also the study suggests that new nuclear data at higher deuteron energies are mandatory for an accurate study in this field.


1996 ◽  
Vol 30 (3P2B) ◽  
pp. 1175-1181
Author(s):  
M.B. Chadwick ◽  
A.V. Ignatyuk ◽  
A.B. Pashchenko ◽  
H. Vonach ◽  
P.G. Young

Sign in / Sign up

Export Citation Format

Share Document