A New Superalloy Enabling Heavy Duty Gas Turbine Wheels for Improved Combined Cycle Efficiency

2017 ◽  
Author(s):  
Andrew Detor ◽  
◽  
Richard DiDomizio ◽  
Don McAllister ◽  
Erica Sampson ◽  
...  
2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Shi Liu ◽  
Hong Yin ◽  
Yan Xiong ◽  
Xiaoqing Xiao

Heavy duty gas turbines are the core components in the integrated gasification combined cycle (IGCC) system. Different from the conventional fuel for gas turbine such as natural gas and light diesel, the combustible component acquired from the IGCC system is hydrogen-rich syngas fuel. It is important to modify the original gas turbine combustor or redesign a new combustor for syngas application since the fuel properties are featured with the wide range hydrogen and carbon monoxide mixture. First, one heavy duty gas turbine combustor which adopts natural gas and light diesel was selected as the original type. The redesign work mainly focused on the combustor head and nozzle arrangements. This paper investigated two feasible combustor arrangements for the syngas utilization including single nozzle and multiple nozzles. Numerical simulations are conducted to compare the flow field, temperature field, composition distributions, and overall performance of the two schemes. The obtained results show that the flow structure of the multiple nozzles scheme is better and the temperature distribution inside the combustor is more uniform, and the total pressure recovery is higher than the single nozzle scheme. Through the full scale test rig verification, the combustor redesign with multiple nozzles scheme is acceptable under middle and high pressure combustion test conditions. Besides, the numerical computations generally match with the experimental results.


2020 ◽  
Author(s):  
Manuel A. Rendón ◽  
André R. Novgorodcev ◽  
Daniel De A. Fernandes

In recent years, several thermal power plants were built in Brazil and the percentage of participation of this kind of power generation increased in the local energy market. Since the 1980's, several studies developed mathematical models for gas turbines to be applied in power system analysis. These are simplified representations of static and dynamic behavior of machines. However, published works in dynamic gas turbine models represent a narrow set of machines, and most of the applications in power system analysis employ them, despite the fact that they are not accurate representations of some specific machines. This work presents the modeling procedure and validation for a 106 MW heavy-duty gas turbine working in combined cycle in a Brazilian thermal power plant. The gray-box approach, based on an existing tuned model based on real sampled data, is used, and the modeling involves a static approach in steady state, and dynamic modeling with system identification from sampled data. Sampled data were corrected to standard environmental conditions. The model was developed and validated in MATLAB®-Simulink®.


Author(s):  
J. Masada ◽  
I. Fukue

A new, 13MW class, heavy duty gas turbine, the “MF-111” was developed for use as a prime mover for cogeneration, combined cycle and repowering applications. The use of such equipment in refineries presents special challenges as regards the combustion of nonstandard fuels, tolerance of industrial environments, and accomodation of site-specific design requirements. Such circumstances add substantially to the tasks of proving and adjusting the design of a new gas turbine, meeting stringent emissions requirements and introducing to the world of industrial gas turbines the benefits of F-class (1250°C burner outlet temperature) levels of thermodynamic performance. This paper describes how these challenges have successfully been met during the three calendar years and ten machine-years of MF-111 refinery-application experience accumulated to-late.


Author(s):  
Eiji Akita ◽  
Kuniaki Aoyama ◽  
Yoshiaki Tsukuda ◽  
Ichiro Fukue ◽  
Sunao Aoki

A new 13 MW class heavy duty gas turbine “MF-111” with the combustor outlet temperature of 1250°C (1523 K) was developed and tested. The thermal efficiency of MF-111 is designed to be 32% for simple-cycle and 45% in combined-cycle operation. MF-111 has single-shaft configuration, 15-stage axial flow compressor, 8 cannular type combustors and 3-stage axial flow turbine. Advanced cooling technology was incorporated for the turbine and the combustor design to be capable of higher combustor outlet temperature. The prototype was shoptested at full load in April, 1986. The performance and the metal temperatures of hot parts were confirmed to well satisfy the design goal. The first machine of MF-111 started the commercial operation from August, 1986 and has logged satisfactory operations.


2011 ◽  
Vol 84-85 ◽  
pp. 259-263
Author(s):  
Xun Liu ◽  
Song Tao Wang ◽  
Xun Zhou ◽  
Guo Tai Feng

In this paper, the trailing edge film cooling flow field of a heavy duty gas turbine cascade has been studied by central difference scheme and multi-block grid technique. The research is based on the three-dimensional N-S equation solver. By way of analysis of the temperature field, the distribution of profile pressure, and the distribution of film-cooling adiabatic effectiveness in the region of trailing edge with different cool air injection mass and different angles, it is found that the impact on the film-cooling adiabatic effectiveness is slightly by changing the injection mass. The distribution of profile pressure dropped intensely at the pressure side near the injection holes line with the large mass cooling air. The cooling effect is good in the region of trailing edge while the injection air is along the direction of stream.


2015 ◽  
Vol 5 (2) ◽  
pp. 89
Author(s):  
Munzer S. Y. Ebaid ◽  
Qusai Z. Al-hamdan

<p class="1Body">Several modifications have been made to the simple gas turbine cycle in order to increase its thermal efficiency but within the thermal and mechanical stress constrain, the efficiency still ranges between 38 and 42%. The concept of using combined cycle power or CPP plant would be more attractive in hot countries than the combined heat and power or CHP plant. The current work deals with the performance of different configurations of the gas turbine engine operating as a part of the combined cycle power plant. The results showed that the maximum CPP cycle efficiency would be at a point for which the gas turbine cycle would have neither its maximum efficiency nor its maximum specific work output. It has been shown that supplementary heating or gas turbine reheating would decrease the CPP cycle efficiency; hence, it could only be justified at low gas turbine inlet temperatures. Also it has been shown that although gas turbine intercooling would enhance the performance of the gas turbine cycle, it would have only a slight effect on the CPP cycle performance.</p>


Sign in / Sign up

Export Citation Format

Share Document