Determination of the Strong Coupling Constant ($\alpha_s$) and a Test of Perturbative QCD Using $W +$ Jets Processes in the D0 Detector

1993 ◽  
Author(s):  
Jaehoon Yu
2011 ◽  
Vol 26 (03n04) ◽  
pp. 658-659 ◽  
Author(s):  
H. KHANPOUR ◽  
ALI N. KHORRAMIAN ◽  
S. ATASHBAR TEHRANI

In this article we present a determination of the strong coupling constant and parton distribution functions (PDFs) based on a next-to-leading order (NLO) perturbative QCD analysis of proton structure function. More precisely, we extract [Formula: see text] and PDFs by fitting perturbative QCD predictions to the data from the measurements of the proton structure function [Formula: see text] in deep inelastic scattering, which are based on perturbative QCD calculations up to NLO. We obtain at NLO [Formula: see text] in the variable-flavor number scheme.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Adam Kardos ◽  
Gábor Somogyi ◽  
Andrii Verbytskyi

AbstractWe consider a method for determining the QCD strong coupling constant using fits of perturbative predictions for event shape averages to data collected at the LEP, PETRA, PEP and TRISTAN colliders. To obtain highest accuracy predictions we use a combination of perturbative $${{{\mathcal {O}}}}(\alpha _{S}^{3})$$ O ( α S 3 ) calculations and estimations of the $${{{\mathcal {O}}}}(\alpha _{S}^{4})$$ O ( α S 4 ) perturbative coefficients from data. We account for non-perturbative effects using modern Monte Carlo event generators and analytic hadronization models. The obtained results show that the total precision of the $$\alpha _{S}$$ α S determination cannot be improved significantly with the higher-order perturbative QCD corrections alone, but primarily requires a deeper understanding of the non-perturbative effects.


1980 ◽  
Vol 94 (3) ◽  
pp. 437-443 ◽  
Author(s):  
R. Brandelik ◽  
W. Braunschweig ◽  
K. Gather ◽  
V. Kadansky ◽  
K. Lübelsmeyer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document