scholarly journals Modernization of Technical Requirements or Licensing of Advanced Non-Light Water Reactors: Probabilistic Risk Assessment Approach

2019 ◽  
Author(s):  
Wayne L. Moe ◽  
Amir Afzali
Author(s):  
Dave Grabaskas ◽  
Acacia J. Brunett ◽  
Matthew Bucknor

GE Hitachi Nuclear Energy (GEH) and Argonne National Laboratory are currently engaged in a joint effort to modernize and develop probabilistic risk assessment (PRA) techniques for advanced non-light water reactors. At a high level the primary outcome of this project will be the development of next-generation PRA methodologies that will enable risk-informed prioritization of safety- and reliability-focused research and development, while also identifying gaps that may be resolved through additional research. A subset of this effort is the development of a reliability database (RDB) methodology to determine applicable reliability data for inclusion in the quantification of the PRA. The RDB method developed during this project seeks to satisfy the requirements of the Data Analysis element of the ASME/ANS Non-LWR PRA standard. The RDB methodology utilizes a relevancy test to examine reliability data and determine whether it is appropriate to include as part of the reliability database for the PRA. The relevancy test compares three component properties to establish the level of similarity to components examined as part of the PRA. These properties include the component function, the component failure modes, and the environment/boundary conditions of the component. The relevancy test is used to gauge the quality of data found in a variety of sources, such as advanced reactor-specific databases, non-advanced reactor nuclear databases, and non-nuclear databases. The RDB also establishes the integration of expert judgment or separate reliability analysis with past reliability data. This paper provides details on the RDB methodology, and includes an example application of the RDB methodology for determining the reliability of the intermediate heat exchanger of a sodium fast reactor. The example explores a variety of reliability data sources, and assesses their applicability for the PRA of interest through the use of the relevancy test.


2010 ◽  
Vol 104 (12) ◽  
pp. 1848-1857 ◽  
Author(s):  
Ariane Dufour ◽  
Sandrine Wetzler ◽  
Mathilde Touvier ◽  
Sandrine Lioret ◽  
Jennifer Gioda ◽  
...  

Different European institutions have developed mathematical models to propose maximum safe levels either for fortified foods or for dietary supplements. The objective of the present study was to compare and check the safety of these different maximum safe levels (MSL) by using a probabilistic risk assessment approach. The potential maximum nutritional intakes were estimated by taking into account all sources of intakes (base diet, fortified foods and dietary supplements) and compared with the tolerable upper intake levels for vitamins and minerals. This approach simulated the consequences of both food fortification and supplementation in terms of food safety. Different scenarios were tested. They are the result of the combination of several MSL obtained using the previous models. The study was based on the second French Individual and National Study on Food Consumption performed in 2006–7, matched with the French food nutritional composition database. The analyses were based on a sample of 1918 adults aged 18–79 years. Some MSL in fortified foods and dietary supplements obtained independently were protective enough, although some others could lead to nutritional intakes above the tolerable upper intake levels. The simulation showed that it is crucial to consider the inter-individual variability of fortified food intakes when setting MSL for foods and supplements. The risk assessment approach developed here by integrating the MSL for fortified foods and dietary supplements is useful for ensuring consumer protection. It may be subsequently used to test any other MSL for vitamins and minerals proposed in the future.


Sign in / Sign up

Export Citation Format

Share Document