scholarly journals Assessment of a solid particle receiver for a high temperature solar central receiver system

Author(s):  
P K Falcone ◽  
J E Noring ◽  
J M Hruby
Author(s):  
Jonathan Roop ◽  
Sheldon Jeter ◽  
Said I. Abdel-Khalik ◽  
Clifford K. Ho

One increasingly viable option for high temperature concentrator solar power (CSP) is a central receiver system with a particle heating receiver (PHR). A PHR system uses suitable particulates to capture and store energy. It is expected that the particles will be sustained at high temperatures (in the range of 300°C or 400°C to 700°C or 800°C or even 1000°C) on most typical days of plant operation, so there is interest in how the particle optical properties might change after prolonged high-temperature exposure. This paper presents the results from experiments conducted over a 5-month period in which samples of various types of particulates including silica sands and alumina proppants were exposed to high temperatures for extended periods of time. The reflectance of a bed of particles was measured at room temperature in 8 wavelength bands using the 410-Solar reflectometer device developed by Surface Optics Corporation. The infrared emittance was determined using the ETS-100 emissometer instrument, also developed by Surface Optics Corporation [1,2]. Particles were heated to 950°C and 350°C, and measurements were recorded at intervals during the exposure so that trends in the optical properties over time could be observed. From the measured data, the total solar absorptance and total hemispherical emittance at high temperature were computed; these results are also presented.


2020 ◽  
Vol 28 (25) ◽  
pp. 37654
Author(s):  
Lifeng Li ◽  
Bo Wang ◽  
John Pye ◽  
Roman Bader ◽  
Wujun Wang ◽  
...  

Author(s):  
Hassan Qandil ◽  
Weihuan Zhao

A novel non-imaging Fresnel-lens-based solar concentrator-receiver system has been investigated to achieve high-efficiency photon and heat outputs with minimized effect of chromatic aberrations. Two types of non-imaging Fresnel lenses, a spot-flat lens and a dome-shaped lens, are designed through a statistical algorithm incorporated in MATLAB. The algorithm optimizes the lens design via a statistical ray-tracing methodology of the incident light, considering the chromatic aberration of solar spectrum, the lens-receiver spacing and aperture sizes, and the optimum number of prism grooves. An equal-groove-width of the Poly-methyl-methacrylate (PMMA) prisms is adopted in the model. The main target is to maximize ray intensity on the receiver’s aperture, and therefore, achieve the highest possible heat flux and output concentration temperature. The algorithm outputs prism and system geometries of the Fresnel-lens concentrator. The lenses coupled with solar receivers are simulated by COMSOL Multiphysics. It combines both optical and thermal analyses for the lens and receiver to study the optimum lens structure for high solar flux output. The optimized solar concentrator-receiver system can be applied to various devices which require high temperature inputs, such as concentrated photovoltaics (CPV), high-temperature stirling engine, etc.


2015 ◽  
Vol 69 ◽  
pp. 158-167 ◽  
Author(s):  
L. Meng ◽  
Z. You ◽  
S. Dubowsky ◽  
B. Li ◽  
F. Xing

Author(s):  
Shakir Shakoor Khatti ◽  
Sheldon Jeter ◽  
Hany Al-Ansary

Abstract Due to increasing energy demand around the globe and potential environmental impacts of fossil fuels, it has become a crucial task for researchers to find alternatives to generate electricity from low-carbon resources at lower costs. Three types of advanced CSP are under consideration: systems heating salt, gas, or particulate. Particle heating receiver (PHR) based central receiver power tower CSP is an emerging technology that promises higher operating temperatures and more cost-effective thermal energy storage (TES) than feasible with existing or alternative CSP systems. For reasons stated above and others, we propose that the particle heating receiver (PHR) based CSP in the classic central receiver power tower (CRPT) configuration will be the most suitable especially in the promising Middle East and North Africa (MENA) region. Specifically, Duba, Al Wajih, and Wa’ad Al-Shamaal regions in Saudi Arabia have high direct normal irradiation (DNI) and represent potential locations. PHR based CSP power tower plant consists of a central receiver power tower with TES and cavity receiver, heliost at field, a high-temperature solar gas turbine with built-in fuel backup to operate in hybrid mode (using both fuel and solar-thermal resources). This study focuses on the optimization of a solar heat supply system (SHSS), consisting of a tower, cavity receiver, and heliostat field. SolarPILOT – Solar Power tower Integrated Layout and Optimization Tool is a field layout optimization tool developed by National Renewable Energy Laboratory (NREL). SolarPILOT is used in this study to generate the field layout of a 1.3 MWe power plant with a solar multiple (SM) of 2, 3, and 4. Cost models for the tower, receiver, and heliostats are developed using the data from research programs, contractors, manufacturing companies, and general cost engineering data and tools. System Advisor Model (SAM) is further used to simulate the annual performance of CSP tower plant including power block (high-temperature gas turbine) and TES using optical efficiency data from SolarPILOT to optimize PHR-based CSP tower plant. The results of this research are fundamental to the techno-economic analysis (TEA) of this and similar smaller-scale systems and will support the TEA of larger grid-connected and smaller off-grid systems operating independently or in conjunction with PV systems.


Sign in / Sign up

Export Citation Format

Share Document