Gold Nanoparticles as Targeted Delivery Systems and Theranostic Agents in Cancer Therapy

2019 ◽  
Vol 26 (35) ◽  
pp. 6493-6513 ◽  
Author(s):  
Alexandra Mioc ◽  
Marius Mioc ◽  
Roxana Ghiulai ◽  
Mirela Voicu ◽  
Roxana Racoviceanu ◽  
...  

Cancer is still a leading cause of death worldwide, while most chemotherapies induce nonselective toxicity and severe systemic side effects. To address these problems, targeted nanoscience is an emerging field that promises to benefit cancer patients. Gold nanoparticles are nowadays in the spotlight due to their many well-established advantages. Gold nanoparticles are easily synthesizable in various shapes and sizes by a continuously developing set of means, including chemical, physical or eco-friendly biological methods. This review presents gold nanoparticles as versatile therapeutic agents playing many roles, such as targeted delivery systems (anticancer agents, nucleic acids, biological proteins, vaccines), theranostics and agents in photothermal therapy. They have also been outlined to bring great contributions in the bioimaging field such as radiotherapy, magnetic resonance angiography and photoacoustic imaging. Nevertheless, gold nanoparticles are therapeutic agents demonstrating its in vitro anti-angiogenic, anti-proliferative and pro-apoptotic effects on various cell lines, such as human cervix, human breast, human lung, human prostate and murine melanoma cancer cells. In vivo studies have pointed out data regarding the bioaccumulation and cytotoxicity of gold nanoparticles, but it has been emphasized that size, dose, surface charge, sex and especially administration routes are very important variables.

2014 ◽  
Vol 2014 ◽  
pp. 1-23 ◽  
Author(s):  
Su-Eon Jin ◽  
Hyo-Eon Jin ◽  
Soon-Sun Hong

Targeted delivery systems of nanobiomaterials are necessary to be developed for the diagnosis and treatment of cancer. Nanobiomaterials can be engineered to recognize cancer-specific receptors at the cellular levels and to deliver anticancer drugs into the diseased sites. In particular, nanobiomaterial-based nanocarriers, so-called nanoplatforms, are the design of the targeted delivery systems such as liposomes, polymeric nanoparticles/micelles, nanoconjugates, norganic materials, carbon-based nanobiomaterials, and bioinspired phage system, which are based on the nanosize of 1–100 nm in diameter. In this review, the design and the application of these nanoplatforms are discussed at the cellular levels as well as in the clinics. We believe that this review can offer recent advances in the targeted delivery systems of nanobiomaterials regardingin vitroandin vivoapplications and the translation of nanobiomaterials to nanomedicine in anticancer therapy.


2016 ◽  
Vol 27 (12) ◽  
pp. 2874-2885 ◽  
Author(s):  
Anup K. Pramanik ◽  
Siddikuzzaman ◽  
Duraippandi Palanimuthu ◽  
Kumaravel Somasundaram ◽  
Ashoka G. Samuelson

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1108
Author(s):  
Oana Craciunescu ◽  
Madalina Icriverzi ◽  
Paula Ecaterina Florian ◽  
Anca Roseanu ◽  
Mihaela Trif

Osteoarthritis (OA) is a degenerative joint disease. An objective of the nanomedicine and drug delivery systems field is to design suitable pharmaceutical nanocarriers with controllable properties for drug delivery and site-specific targeting, in order to achieve greater efficacy and minimal toxicity, compared to the conventional drugs. The aim of this review is to present recent data on natural bioactive compounds with anti-inflammatory properties and efficacy in the treatment of OA, their formulation in lipid nanostructured carriers, mainly liposomes, as controlled release systems and the possibility to be intra-articularly (IA) administered. The literature regarding glycosaminoglycans, proteins, polyphenols and their ability to modify the cell response and mechanisms of action in different models of inflammation are reviewed. The advantages and limits of using lipid nanoformulations as drug delivery systems in OA treatment and the suitable route of administration are also discussed. Liposomes containing glycosaminoglycans presented good biocompatibility, lack of immune system activation, targeted delivery of bioactive compounds to the site of action, protection and efficiency of the encapsulated material, and prolonged duration of action, being highly recommended as controlled delivery systems in OA therapy through IA administration. Lipid nanoformulations of polyphenols were tested both in vivo and in vitro models that mimic OA conditions after IA or other routes of administration, recommending their clinical application.


2020 ◽  
Vol 22 (1) ◽  
pp. 314
Author(s):  
Maria D. Dmitrieva ◽  
Anna A. Voitova ◽  
Maya A. Dymova ◽  
Vladimir A. Richter ◽  
Elena V. Kuligina

Background: The combination of the unique properties of cancer cells makes it possible to find specific ligands that interact directly with the tumor, and to conduct targeted tumor therapy. Phage display is one of the most common methods for searching for specific ligands. Bacteriophages display peptides, and the peptides themselves can be used as targeting molecules for the delivery of diagnostic and therapeutic agents. Phage display can be performed both in vitro and in vivo. Moreover, it is possible to carry out the phage display on cells pre-enriched for a certain tumor marker, for example, CD44 and CD133. Methods: For this work we used several methods, such as phage display, sequencing, cell sorting, immunocytochemistry, phage titration. Results: We performed phage display using different screening systems (in vitro and in vivo), different phage libraries (Ph.D-7, Ph.D-12, Ph.D-C7C) on CD44+/CD133+ and without enrichment U-87 MG cells. The binding efficiency of bacteriophages displayed tumor-targeting peptides on U-87 MG cells was compared in vitro. We also conducted a comparative analysis in vivo of the specificity of the accumulation of selected bacteriophages in the tumor and in the control organs (liver, brain, kidney and lungs). Conclusions: The screening in vivo of linear phage peptide libraries for glioblastoma was the most effective strategy for obtaining tumor-targeting peptides providing targeted delivery of diagnostic and therapeutic agents to glioblastoma.


2012 ◽  
Vol 430 (1-2) ◽  
pp. 276-281 ◽  
Author(s):  
Yiguang Jin ◽  
Yanju Lian ◽  
Lina Du ◽  
Shuangmiao Wang ◽  
Chang Su ◽  
...  

2020 ◽  
Vol 22 (8) ◽  
Author(s):  
Barbara De Berardis ◽  
Magda Marchetti ◽  
Anna Risuglia ◽  
Federica Ietto ◽  
Carla Fanizza ◽  
...  

AbstractIn recent years, the introduction of innovative low-cost and large-scale processes for the synthesis of engineered nanoparticles with at least one dimension less than 100 nm has led to countless useful and extensive applications. In this context, gold nanoparticles stimulated a growing interest, due to their peculiar characteristics such as ease of synthesis, chemical stability and optical properties. This stirred the development of numerous applications especially in the biomedical field. Exposure of manufacturers and consumers to industrial products containing nanoparticles poses a potential risk to human health and the environment. Despite this, the precise mechanisms of nanomaterial toxicity have not yet been fully elucidated. It is well known that the three main routes of exposure to nanomaterials are by inhalation, ingestion and through the skin, with inhalation being the most common route of exposure to NPs in the workplace. To provide a complete picture of the impact of inhaled gold nanoparticles on human health, in this article, we review the current knowledge about the physico-chemical characteristics of this nanomaterial, in the size range of 1–100 nm, and its toxicity for pulmonary structures both in vitro and in vivo. Studies comparing the toxic effect of NPs larger than 100 nm (up to 250 nm) are also discussed.


Biology ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 161
Author(s):  
Séverine André ◽  
Lionel Larbanoix ◽  
Sébastien Verteneuil ◽  
Dimitri Stanicki ◽  
Denis Nonclercq ◽  
...  

Blood-brain barrier (BBB) crossing and brain penetration are really challenging for the delivery of therapeutic agents and imaging probes. The development of new crossing strategies is needed, and a wide range of approaches (invasive or not) have been proposed so far. The receptor-mediated transcytosis is an attractive mechanism, allowing the non-invasive penetration of the BBB. Among available targets, the low-density lipoprotein (LDL) receptor (LDLR) shows favorable characteristics mainly because of the lysosome-bypassed pathway of LDL delivery to the brain, allowing an intact discharge of the carried ligand to the brain targets. The phage display technology was employed to identify a dodecapeptide targeted to the extracellular domain of LDLR (ED-LDLR). This peptide was able to bind the ED-LDLR in the presence of natural ligands and dissociated at acidic pH and in the absence of calcium, in a similar manner as the LDL. In vitro, our peptide was endocytosed by endothelial cells through the caveolae-dependent pathway, proper to the LDLR route in BBB, suggesting the prevention of its lysosomal degradation. The in vivo studies performed by magnetic resonance imaging and fluorescent lifetime imaging suggested the brain penetration of this ED-LDLR-targeted peptide.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 850 ◽  
Author(s):  
Alazne Moreno-Lanceta ◽  
Mireia Medrano-Bosch ◽  
Pedro Melgar-Lesmes

Cancer has become one of the most prevalent diseases worldwide, with increasing incidence in recent years. Current pharmacological strategies are not tissue-specific therapies, which hampers their efficacy and results in toxicity in healthy organs. Carbon-based nanomaterials have emerged as promising nanoplatforms for the development of targeted delivery systems to treat diseased cells. Single-walled carbon nanohorns (SWCNH) are graphene-based horn-shaped nanostructure aggregates with a multitude of versatile features to be considered as suitable nanosystems for targeted drug delivery. They can be easily synthetized and functionalized to acquire the desired physicochemical characteristics, and no toxicological effects have been reported in vivo followed by their administration. This review focuses on the use of SWCNH as drug delivery systems for cancer therapy. Their main applications include their capacity to act as anticancer agents, their use as drug delivery systems for chemotherapeutics, photothermal and photodynamic therapy, gene therapy, and immunosensing. The structure, synthesis, and covalent and non-covalent functionalization of these nanoparticles is also discussed. Although SWCNH are in early preclinical research yet, these nanotube-derived nanostructures demonstrate an interesting versatility pointing them out as promising forthcoming drug delivery systems to target and treat cancer cells.


Sign in / Sign up

Export Citation Format

Share Document