Germacrone: A Potent Secondary Metabolite with Therapeutic Potential in Metabolic Diseases, Cancer and Viral Infections

2020 ◽  
Vol 21 (14) ◽  
pp. 1079-1090
Author(s):  
Ammara Riaz ◽  
Azhar Rasul ◽  
Nazia Kanwal ◽  
Ghulam Hussain ◽  
Muhammad Ajmal Shah ◽  
...  

: Natural products, an infinite reserve of bioactive molecules, will continue to serve humans as an important source of therapeutic agents. Germacrone is a bioactive natural compound found in the traditional medicinal plants of family Zingiberaceae. This multifaceted chemical entity has become a point of focus during recent years due to its numerous pharmacological applications, e.g., anticancer, anti-inflammatory, antiviral, antioxidant, anti-adipogenic, anti-androgenic, antimicrobial, insecticidal, and neuroprotective. Germacrone is an effective inducer of cell cycle arrest and apoptosis in various cancers (breast, brain, liver, skin, prostate, gastric, and esophageal) via modulation of different cell signaling molecules and pathways involved in cancer proliferation. This is the first report highlighting the wide spectrum of pharmacological activities exhibited by germacrone. The reported data collected from various shreds of evidences recommend that this multifaceted compound could serve as a potential drug candidate in the near future.

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
M. I. Nasser ◽  
Shuoji Zhu ◽  
Chen Chen ◽  
Mingyi Zhao ◽  
Huanlei Huang ◽  
...  

Nature is a vast source of bioactive molecules and has provided an active and efficient reservoir for drug discovery. Among natural compounds, one of the most promising is Schisandrin B (Sch B), isolated from Schisandra chinensis, which was documented to possess diversified pharmacokinetic propriety, among them antioxidant, anti-inflammation, cardioprotection, and neuroprotection. Due to its large biological properties, Sch B was recorded to be a potent cure for several diseases by targeting several signaling pathways. This review is aimed at emphasizing the recent data on the biological properties of Sch B among the molecular mechanism of this drug on tumoral, cardiac, and neural diseases. The data suggest that the antitumor activities of Sch B were mainly through apoptosis and cell cycle arrest at the diver’s stage. It is reported that Sch B could be used as effective chemotherapy, neuroprotection, and cardioprotection since it possesses a spectrum of biological activities; however, further investigations on the mechanism of its action and preclinical trials are still mandatory to further validate the potential of this natural drug candidate.


2020 ◽  
Vol 27 (2) ◽  
pp. 120-134 ◽  
Author(s):  
Mithoor Divyashree ◽  
Madhu K. Mani ◽  
Dhanasekhar Reddy ◽  
Ranjith Kumavath ◽  
Preetam Ghosh ◽  
...  

: In this era of multi-drug resistance (MDR), antimicrobial peptides (AMPs) are one of the most promising classes of potential drug candidates to combat communicable as well as noncommunicable diseases such as cancers and diabetes. AMPs show a wide spectrum of biological activities which include antiviral, antifungal, anti-mitogenic, anticancer, and anti-inflammatory properties. Apart from these prospective therapeutic potentials, the AMPs can act as food preservatives and immune modulators. Therefore, AMPs have the potential to replace conventional drugs and may gain a significant global drug market share. Although several AMPs have shown therapeutic potential in vitro or in vivo, in most cases they have failed the clinical trial owing to various issues. In this review, we discuss in brief (i) molecular mechanisms of AMPs in various diseases, (ii) importance of AMPs in pharmaceutical industries, (iii) the challenges in using AMPs as therapeutics and how to overcome, (iv) available AMP therapeutics in market, and (v) AMPs under clinical trials. Here, we specifically focus on the therapeutic AMPs in the areas of dermatology, surgery, oncology and metabolic diseases.


2020 ◽  
Vol 71 (1) ◽  
pp. 329-346 ◽  
Author(s):  
Shelly T. Karuna ◽  
Lawrence Corey

In the last decade, over a dozen potent broadly neutralizing antibodies (bnAbs) to several HIV envelope protein epitopes have been identified, and their in vitro neutralization profiles have been defined. Many have demonstrated prevention efficacy in preclinical trials and favorable safety and pharmacokinetic profiles in early human clinical trials. The first human prevention efficacy trials using 10 sequential, every-two-month administrations of a single anti-HIV bnAb are anticipated to conclude in 2020. Combinations of complementary bnAbs and multi-specific bnAbs exhibit improved breadth and potency over most individual antibodies and are entering advanced clinical development. Genetic engineering of the Fc regions has markedly improved bnAb half-life, increased mucosal tissue concentrations of antibodies (especially in the genital tract), and enhanced immunomodulatory and Fc effector functionality, all of which improve antibodies' preventative and therapeutic potential. Human-derived monoclonal antibodies are likely to enter the realm of primary care prevention and therapy for viral infections in the near future.


2011 ◽  
Vol 31 (4) ◽  
pp. 341-356 ◽  
Author(s):  
Virginia Amanatidou ◽  
Apostolos Zaravinos ◽  
Stavros Apostolakis ◽  
Demetrios A. Spandidos

2019 ◽  
Vol 26 (31) ◽  
pp. 5849-5861 ◽  
Author(s):  
Pan Jiang ◽  
Feng Yan

tiRNAs & tRFs are a class of small molecular noncoding tRNA derived from precise processing of mature or precursor tRNAs. Most tiRNAs & tRFs described originate from nucleus-encoded tRNAs, and only a few tiRNAs and tRFs have been reported. They have been suggested to play important roles in inhibiting protein synthesis, regulating gene expression, priming viral reverse transcriptases, and the modulation of DNA damage responses. However, the regulatory mechanisms and potential function of tiRNAs & tRFs remain poorly understood. This review aims to describe tiRNAs & tRFs, including their structure, biological functions and subcellular localization. The regulatory roles of tiRNAs & tRFs in translation, neurodegeneration, metabolic diseases, viral infections, and carcinogenesis are also discussed in detail. Finally, the potential applications of these noncoding tRNAs as biomarkers and gene regulators in different diseases is also highlighted.


2019 ◽  
Vol 20 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Abdullah M. Alnuqaydan ◽  
Bilal Rah

Background:Tamarix Articulata (T. articulata), commonly known as Tamarisk or Athal in Arabic region, belongs to the Tamaricaece species. It is an important halophytic medicinal plant and a good source of polyphenolic phytochemical(s). In traditional medicines, T. articulata extract is commonly used, either singly or in combination with other plant extracts against different ailments since ancient times.Methods:Electronic database survey via Pubmed, Google Scholar, Researchgate, Scopus and Science Direct were used to review the scientific inputs until October 2018, by searching appropriate keywords. Literature related to pharmacological activities of T. articulata, Tamarix species, phytochemical analysis of T. articulata, biological activities of T. articulata extracts. All of these terms were used to search the scientific literature associated with T. articulata; the dosage of extract, route of administration, extract type, and in-vitro and in-vivo model.Results:Numerous reports revealed that T. articulata contains a wide spectrum of phytochemical(s), which enables it to have a wide window of biological properties. Owing to the presence of high content of phytochemical compounds like polyphenolics and flavonoids, T. articulata is a potential source of antioxidant, anti-inflammatory and antiproliferative properties. In view of these pharmacological properties, T. articulata could be a potential drug candidate to treat various clinical conditions including cancer in the near future.Conclusion:In this review, the spectrum of phytochemical(s) has been summarized for their pharmacological properties and the mechanisms of action, and the possible potential therapeutic applications of this plant against various diseases discussed.


2020 ◽  
Vol 15 (3) ◽  
pp. 219-232
Author(s):  
Ifrah Anwar ◽  
Usman A. Ashfaq ◽  
Zeeshan Shokat

The liver is a vital organ for life and the only internal organ that is capable of natural regeneration. Although the liver has high regeneration capacity, excessive hepatocyte death can lead to liver failure. Various factors can lead to liver damage including drug abuse, some natural products, alcohol, hepatitis, and autoimmunity. Some models for studying liver injury are APAP-based model, Fas ligand (FasL), D-galactosamine/endotoxin (Gal/ET), Concanavalin A, and carbon tetrachloride-based models. The regeneration of the liver can be carried out using umbilical cord blood stem cells which have various advantages over other stem cell types used in liver transplantation. UCB-derived stem cells lack tumorigenicity, have karyotype stability and high immunomodulatory, low risk of graft versus host disease (GVHD), low risk of transmitting somatic mutations or viral infections, and low immunogenicity. They are readily available and their collection is safe and painless. This review focuses on recent development and modern trends in the use of umbilical cord stem cells for the regeneration of liver fibrosis.


Author(s):  
Vijay Kumar

: Mimosa pudica Linn is an integrated part of Traditional Medicines Systems of India, China, Africa, Korea and America. It has been used from centuries in traditional medicines to cure different diseases like fever, diabetes, constipation, jaundice, ulcers, biliousness, and dyspepsia. It is an important ingredient of wide class of herbal formulations. To assess the scientific evidence for therapeutic potential of Mimosa pudica Linn and to identify the gaps for future research. The available information on the ethno-medicinal uses, phytochemistry, pharmacology and toxicology of Mimosa pudica Linn was collected via a library and electronic searches in Sci-Finder, Pub-Med, Science Direct, Google Scholar for the period, 1990 to 2020. In traditional medicinal systems, variety of ethno-medicinal applications of Mimosa pudica Linn has been noticed. Phytochemical investigation has resulted in identification of 40 well known chemical constituents, among which alkaloids, phenols and flavionoids are the predominant groups. The crude extracts and isolates have exhibited a wide spectrum of in vitro and in vivo pharmacological activities including anti-cancer, anti-inflammation, osteoporosis, neurological disorders, hypertension etc.. To quantify the Mimosa pudica Linn and its formulations, analytical techniques like HPLC and HPTLC has shown dominancy with good range of recovery and detection limit. Mimosa pudica Linn is the well-known herb since an ancient time. The pharmacological results supported some of the applications of Mimosa pudica Linn in traditional medicine systems. Perhaps, the predominance of alkaloids, phenols and flavionoids are responsible for the pharmacological activities the crude extracts and isolates of Mimosa pudica Linn. Further, there is need to isolate and evaluate the active chemical constituents of Mimosa pudica Linn having significant medicinal values. In future, it is important to study the exact mechanism associated with the phytochemicals of Mimosa pudica Linn especially on anti-cancer activities. Notably, toxicity studies on Mimosa pudica Linn are limited which are to be explored in future for the safe application of Mimosa pudica Linn and its formulations.


2020 ◽  
Vol 15 (6) ◽  
pp. 482-491 ◽  
Author(s):  
Milena Kostadinova ◽  
Milena Mourdjeva

Mesenchymal stem/stromal cells (MSCs) are localized throughout the adult body as a small population in the stroma of the tissue concerned. In injury, tissue damage, or tumor formation, they are activated and leave their niche to migrate to the site of injury, where they release a plethora of growth factors, cytokines, and other bioactive molecules. With the accumulation of data about the interaction between MSCs and tumor cells, the dualistic role of MSCs remains unclear. However, a large number of studies have demonstrated the natural anti-tumor properties inherent in MSCs, so this is the basis for intensive research for new methods using MSCs as a tool to suppress cancer cell development. This review focuses specifically on advanced approaches in modifying MSCs to become a powerful, precision- targeted tool for killing cancer cells, but not normal healthy cells. Suppression of tumor growth by MSCs can be accomplished by inducing apoptosis or cell cycle arrest, suppressing tumor angiogenesis, or blocking mechanisms mediating metastasis. In addition, the chemosensitivity of cancer cells may be increased so that the dose of the chemotherapeutic agent used could be significantly reduced.


Sign in / Sign up

Export Citation Format

Share Document