Advancements in Docking and Molecular Dynamics Simulations Towards Ligand-receptor Interactions and Structure-function Relationships

2018 ◽  
Vol 18 (20) ◽  
pp. 1755-1768 ◽  
Author(s):  
Ahmad Abu Turab Naqvi ◽  
Taj Mohammad ◽  
Gulam Mustafa Hasan ◽  
Md. Imtaiyaz Hassan

Protein-ligand interaction is an imperative subject in structure-based drug design and protein function prediction process. Molecular docking is a computational method which predicts the binding of a ligand molecule to the particular receptor. It predicts the binding pose, strength and binding affinity of the molecules using various scoring functions. Molecular docking and molecular dynamics simulations are widely used in combination to predict the binding modes, binding affinities and stability of different protein-ligand systems. With advancements in algorithms and computational power, molecular dynamics simulation is now a fundamental tool to investigative bio-molecular assemblies at atomic level. These methods in association with experimental support have been of great value in modern drug discovery and development. Nowadays, it has become an increasingly significant method in drug discovery process. In this review, we focus on protein-ligand interactions using molecular docking, virtual screening and molecular dynamics simulations. Here, we cover an overview of the available methods for molecular docking and molecular dynamics simulations, and their advancement and applications in the area of modern drug discovery. The available docking software and their advancement including application examples of different approaches for drug discovery are also discussed. We have also introduced the physicochemical foundations of molecular docking and simulations, mainly from the perception of bio-molecular interactions.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Chandrabhan Seniya ◽  
Ghulam Jilani Khan ◽  
Kuldeep Uchadia

Cholinesterase inhibitors (ChE-Is) are the standard for the therapy of AD associated disorders and are the only class of approved drugs by the Food and Drug Administration (FDA). Additionally, acetylcholinesterase (AChE) is the target for many Alzheimer’s dementia drugs which block the function of AChE but have some side effects. Therefore, in this paper, an attempt was made to elucidate cholinesterase inhibition potential of secondary metabolite fromCannabisplant which has negligible or no side effect. Molecular docking of 500 herbal compounds, against AChE, was performed using Autodock 4.2 as per the standard protocols. Molecular dynamics simulations have also been carried out to check stability of binding complex in water for 1000 ps. Our molecular docking and simulation have predicted high binding affinity of secondary metabolite (C28H34N2O6) to AChE. Further, molecular dynamics simulations for 1000 ps suggest that ligand interaction with the residues Asp72, Tyr70-121-334, and Phe288 of AChE, all of which fall under active site/subsite or binding pocket, might be critical for the inhibitory activity of AChE. This approach might be helpful to understand the selectivity of the given drug molecule in the treatment of Alzheimer's disease. The study provides evidence for consideration ofC28H34N2O6as a valuable small ligand molecule in treatment and prevention of AD associated disorders and furtherin vitroandin vivoinvestigations may prove its therapeutic potential.


2014 ◽  
Vol 92 (9) ◽  
pp. 821-830 ◽  
Author(s):  
Zhi-Guang Zhou ◽  
Qi-Zheng Yao ◽  
Dong Lei ◽  
Qing-Qing Zhang ◽  
Ji Zhang

Many experimental studies have found that flavonoids can inhibit the activities of matrix metalloproteinases (MMPs), but the relevant mechanisms are still unclear. In this paper, the interaction mechanisms of MMP-9 with its five flavonoid inhibitors are investigated using a combination of molecular docking, hybrid quantum mechanical and molecular mechanical (QM/MM) calculations, and molecular dynamics simulations. The molecular dynamics simulation results show a good linear correlation between the calculated binding free energies of QM/MM−Poisson–Boltzmann surface area (PBSA) and the experimental −log(EC50) regarding the studied five flavonoids on MMP-9 inhibition in explicit solvent. It is found that compared with the MM−PBSA method, the QM/MM−PBSA method can obviously improve the accuracy for the calculated binding free energies. The predicted binding modes of the five flavonoid−MMP-9 complexes reveal that the different hydrogen bond networks can form besides producing the Zn−O coordination bonds, which can reasonably explain previous experimental results. The agreement between our calculated results and the previous experimental facts indicates that the force field parameters used here are effective and reliable for investigating the systems of flavonoid−MMP-9 interactions, and thus, these simulations and analyses could be reproduced for the other related systems involving protein−ligand interactions. This paper may be helpful for designing the new MMP-9 inhibitors having higher biological activities by carrying out the structural modifications of flavonoid molecules.


2019 ◽  
Vol 16 (2) ◽  
pp. 373-380 ◽  
Author(s):  
Tatiane P. Rodrigues ◽  
Jorddy N. Cruz ◽  
Tiago S. Arouche ◽  
Tais S. S. Pereira ◽  
Wanessa A. Costa ◽  
...  

Recent studies have reported that phthalates are capable of causing mutations and other changes in the genetic material. This study aimed to investigate the molecular interactions between phthalate di(2-ethylhexyl) phthalate (DEHP) and its metabolites monobutyl phthalate (MBP) and monoethyl phthalate (MEP), interacting with DNA. The research was conducted using molecular modeling techniques such as molecular docking and molecular dynamics simulations. Molecular docking revealed that the DEHP, MBP, and MEP are able to establish hydrogen interactions with various nucleotide bases. Molecular dynamics simulations revealed that these molecules interacted with the DNA, and the binding free energy results demonstrated that the DNA-ligand interaction has favorable free energy. The values for free binding energy were as follows: DNA–DEHP, –21.66 kcal/mol; DNA–MBP, –17.29 kcal/mol; and DNA–MEP, –20.13 kcal/mol. For these three systems, the contributions of van der Waals, electrostatic, and nonpolar solvation energy were favorable for the interaction. The van der Waals interactions contributed the major energy to the intercalation of the binders.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3171 ◽  
Author(s):  
Vladimir P. Berishvili ◽  
Alexander N. Kuimov ◽  
Andrew E. Voronkov ◽  
Eugene V. Radchenko ◽  
Pradeep Kumar ◽  
...  

Tankyrase enzymes (TNKS), a core part of the canonical Wnt pathway, are a promising target in the search for potential anti-cancer agents. Although several hundreds of the TNKS inhibitors are currently known, identification of their novel chemotypes attracts considerable interest. In this study, the molecular docking and machine learning-based virtual screening techniques combined with the physico-chemical and ADMET (absorption, distribution, metabolism, excretion, toxicity) profile prediction and molecular dynamics simulations were applied to a subset of the ZINC database containing about 1.7 M commercially available compounds. Out of seven candidate compounds biologically evaluated in vitro for their inhibition of the TNKS2 enzyme using immunochemical assay, two compounds have shown a decent level of inhibitory activity with the IC50 values of less than 10 nM and 10 μM. Relatively simple scores based on molecular docking or MM-PBSA (molecular mechanics, Poisson-Boltzmann, surface area) methods proved unsuitable for predicting the effect of structural modification or for accurate ranking of the compounds based on their binding energies. On the other hand, the molecular dynamics simulations and Free Energy Perturbation (FEP) calculations allowed us to further decipher the structure-activity relationships and retrospectively analyze the docking-based virtual screening performance. This approach can be applied at the subsequent lead optimization stages.


2021 ◽  
Vol 21 (5) ◽  
pp. 1252
Author(s):  
Ari Hardianto ◽  
Muhammad Yusuf ◽  
Ika Wiani Hidayat ◽  
Safri Ishmayana ◽  
Ukun Mochammad Syukur Soedjanaatmadja

Coronavirus disease (COVID-19) is a pandemic burdening the global economy. It is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Black cumin (Nigella sativa) seed may contain antivirals for the disease since it was reported to inhibit the human immunodeficiency virus (HIV) and hepatitis C virus (HCV). Main protease (Mpro) is a vital protein for viral replication and a promising target for COVID-19 drug development. Hence, in this study, we intended to uncover the potency of N. sativa seed as the natural source of inhibitors for SARS-CoV-2 Mpro. We collected secondary metabolites in N. sativa seed through a literature search and employed Lipinski’s rule of five as the initial filter. Subsequently, virtual screening campaigns using a molecular docking method were performed, with N3 inhibitor and leupeptin as reference ligands. The top hits were analyzed further using a molecular dynamics simulation approach. Molecular dynamics simulations showed that binding affinities of nigellamine A2 and A3 to Mpro are comparable to that of leupeptin, with median values of -43.9 and -36.2 kcal mol–1, respectively. Ultimately, this study provides scientific information regarding N. sativa seeds’ potency against COVID-19 and helps direct further wet experiments.


2020 ◽  
Author(s):  
Dr. Chirag N. Patel ◽  
Dr. Prasanth Kumar S. ◽  
Dr. Himanshu A. Pandya ◽  
Dr. Rakesh M. Rawal

<p>The pandemic outbreak of COVID-19 virus (SARS-CoV-2) has become critical global health issue. The biophysical and structural evidence shows that SARS-CoV-2 spike protein possesses higher binding affinity towards angiotensin-converting enzyme 2 (ACE2) and hemagglutinin-acetylesterase (HE) glycoprotein receptor. Hence, it was selected as a target to generate the potential candidates for the inhibition of HE glycoprotein. The present study focuses on extensive computational approaches which contains molecular docking, ADMET prediction followed by molecular dynamics simulations and free energy calculations. Furthermore, virtual screening of NPACT compounds identified 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one, Silymarin, Withanolide D, Spirosolane and Oridonin were interact with high affinity. The ADMET prediction revealed pharmacokinetics and drug-likeness properties of top-ranked compounds. Molecular dynamics simulations and binding free energy calculations affirmed that these five NPACT compounds were robust HE inhibitor.</p>


2020 ◽  
Author(s):  
Dr. Chirag N. Patel ◽  
Dr. Prasanth Kumar S. ◽  
Dr. Himanshu A. Pandya ◽  
Dr. Rakesh M. Rawal

<p>The pandemic outbreak of COVID-19 virus (SARS-CoV-2) has become critical global health issue. The biophysical and structural evidence shows that SARS-CoV-2 spike protein possesses higher binding affinity towards angiotensin-converting enzyme 2 (ACE2) and hemagglutinin-acetylesterase (HE) glycoprotein receptor. Hence, it was selected as a target to generate the potential candidates for the inhibition of HE glycoprotein. The present study focuses on extensive computational approaches which contains molecular docking, ADMET prediction followed by molecular dynamics simulations and free energy calculations. Furthermore, virtual screening of NPACT compounds identified 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one, Silymarin, Withanolide D, Spirosolane and Oridonin were interact with high affinity. The ADMET prediction revealed pharmacokinetics and drug-likeness properties of top-ranked compounds. Molecular dynamics simulations and binding free energy calculations affirmed that these five NPACT compounds were robust HE inhibitor.</p>


1992 ◽  
Vol 288 (1) ◽  
pp. 109-116 ◽  
Author(s):  
B Mao

The molecular flexibility of an inhibitor in ligand-binding process has been investigated by the mass-weighted molecular-dynamics simulation, a computational method adopted from the standard molecular-dynamics simulation and one by which the conformational space of a biomolecular system over potential energy barriers can be sampled effectively. The bimolecular complex of the aspartyl proteinase from Rhizopus chinensis, rhizopuspepsin, and an octapeptide inhibitor was previously studied in a mass-weighted molecular-dynamics simulation; the study has been extended for investigating the molecular flexibility in ligand binding. A series of mass-weighted molecular-dynamics simulations was carried out in which libration of the inhibitor dihedral angles was parametrically controlled, and threshold values of dihedral angle libration amplitudes were observed from monitoring the sampling of the enzyme binding pocket by the inhibitor in the simulations. The computational results are consistent with the general notion of molecular-flexibility requirement for ligand binding; the freedom of dihedral rotations of side-chain groups was found to be particularly important for ligand binding. Thus the critical degree of molecular flexibility which would contribute to effective enzyme inhibition can be obtained precisely from the modified molecular-dynamics simulations; the procedure described herein represents a first step toward providing quantitative measures of such a molecular-flexibility index for inhibitor molecules that have been otherwise targeted for optimal protein-ligand interactions.


Sign in / Sign up

Export Citation Format

Share Document